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A Analysis of Relaxed Problem using Dynamic Programming

As an intermediate step toward characterizing the optimal policy in the general model, we study a

relaxed problem that ignores the agent’s incentive constraint. When u(·) is convex, and both the

cost of monitoring c and effort k are small enough, the solution of such a relaxed problem satisfies

the agent’s incentive constraint being thus the optimal policy.1 Moreover, even if moral hazard is

severe, the trade-offs identified in the unconstrained problem influence the structure of the optimal

policy.

Without incentive constraints, it is convenient to analyze the problem using dynamic program-

ming. Consider the evolution of reputation between two inspection dates. Given that the firm

exerts full effort, a = ā, the reputation between two inspections dates evolves according to

ẋt = λ(ā− xt) (A.1)

The optimal policy is Markovian in reputation. Denoting by A the set of reputations that lead

to immediate inspection, the principal payoff given beliefs x, which we denote by U(x), solves the

Hamilton-Jacobi-Bellman (HJB) equation

rU(x) = u(x) + λ(ā− x)U ′(x), x /∈ A (A.2a)

U(x) = xU(1) + (1− x)U(0)− c, x ∈ A. (A.2b)

We can guess and then verify that the optimal policy is given by an audit set A = [x, x], where
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1The solution of this relaxed problem also characterizes the optimal policy when effort (but not quality) is ob-

servable (recall we assume u′(0) ≥ 1 so full effort is optimal in the first best).
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x ≤ ā ≤ x, where it can be shown that the threshold x̂ ∈ {x, x} satisfies the boundary conditions:

U(x̂) = x̂U(1) + (1− x̂)U(0) − c (A.3a)

U ′(x̂) = U(1)− U(0). (A.3b)

Hence, we have the following standard result:

Result A.1 (Benchmark). Suppose that U is a function satisfying the HJB equation (A.2a)-(A.2b)

together with the boundary conditions (A.3a)-(A.3b). Then U is the value function of the Principal’s

optimization problem and the optimal policy is to monitor the firm whenever xt ∈ A = [x, x].
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Figure 1: Value Function. The optimal policy requires to monitor whenever reputation enters the
audit set, xt ∈ A.

Figure 1 illustrates the principal’s payoff as a function of beliefs. Observe that after an inspection

beliefs reset to either x = 0 or x = 1 because reviews are fully informative. Then, beliefs begin

to drift deterministically toward ā, which lies in the interior of the audit set A. When beliefs hit

the boundary of A, the principal monitors the firm for certain. Naturally, the principal acquires

information when enough uncertainty has accumulated, namely when the distance between U(x)

and the line connecting U(0) and U(1) gets large and when beliefs get close to ā, so the drift in

beliefs is small.

The size of the monitoring region A depends on the convexity of the principal’s objective func-

tion and the cost of monitoring c since these parameters capture the value and cost of information,

respectively. In the extreme case when u(·) is linear (or c is too large) the optimal policy is never

to monitor the firm but let beliefs converge to ā (but of course in this case the incentive constraint

would be violated since there are no rewards to effort in the absence of monitoring). By contrast,

as u(·) becomes more convex, the monitoring region widens, leading to more frequent monitoring.
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Eventually, the incentive constraint becomes slack, which, as mentioned above, implies that the

solution to the relaxed problem is the optimal monitoring policy.

Figure 1 illustrates the optimal policy as a function of beliefs. Notice that between inspection

dates beliefs evolve deterministically and monotonically over time, hence there is an equivalent

representation of the monitoring policy based upon the time since last review, t − Tn, and the

outcome observed in the last review, θTn
. Specifically, define:

τH ≡ inf{t : xt = x, x0 = 1} =
1

λ
log

(

1− ā

x− ā

)

τL ≡ inf{t : xt = x, x0 = 0} =
1

λ
log

(

ā

ā− x

)

.

We can then represent the policy by the nth−monitoring time as Tn = Tn−1 + τθTn−1
.2

Remark A.2. This representation of the optimal monitoring policy applies to the case in which

both τL and τH are finite. Depending on the specific parameters of the model, either τL or τH can

be infinite, or in other words, there is no further monitoring after some outcomes. In terms of the

policy specified as a function of beliefs this means that either x = ā or x = ā. In this case, the value

matching and smooth pasting conditions are only valid at the threshold that is different from ā.

A.1 Proof of Result A.1

Proof. Differentiating the HJB equation we get that for any x /∈ [x, x] we have

(r + λ)U ′(x) = u′(x) + λ(ā− x)U ′′(x) (A.4a)

(r + 2λ)U ′′(x) = u′′(x) + λ(ā− x)U ′′′(x) (A.4b)

Using (A.4b) we get that for any x > ā we have U ′′(x) = 0 ⇒ U ′′′(x) > 0. This means that

U ′′(x) ≥ 0 ⇒ U ′′(x) > 0 for all x > x. Similarly, for any x < ā we have U ′′(x) = 0 ⇒ U ′′′(x) < 0

which means that U ′′(x) ≥ 0 ⇒ U ′′(x) > 0 for all x < x. Evaluating (A.4a) at x and using the

smooth pasting condition we find that

(r + λ)(U(1) − U(0)) = u′(x) + λ(ā− x)U ′′(x)

Hence, U we have that U ′′(x) ≥ 0 and U ′′(x) ≥ 0 if and only if

u′(x)

r + λ
≤ U(1) − U(0) ≤

u′(x)

r + λ
(A.5)

2The only exception would be the case when x0 ∈ (0, 1). In this case T1 = 1
λ
log

(

x0−ā

x−ā

)

if x0 > x; T1 =

1
λ
log

(

x0−ā

x−ā

)

if x0 < x and T1 = 0 otherwise. After T1, the policy would be the one described in the text.
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The HJB equation together with the boundary conditions imply that

r(U(0) + x(U(1) − U(0))) = u(x) + λ(ā− x)(U(1) − U(0))

r(U(0) + x(U(1) − U(0))) = u(x) + λ(ā− x)(U(1) − U(0))

Taking the difference between these two equations and rearranging terms we find that

U(1)− U(0) =
1

r + λ

u(x)− u(x)

x− x
.

It follows from the convexity of u that inequality (A.5) is satisfied. The fact that U is increasing

follows directly from the convexity of U and equation (A.4a).

Next, let’s define

H(x) ≡ xU(1) + (1− x)U(0)− U(x).

The convexity of U implies that H is concave and H(x) = c for x ∈ [x, x] and H(x) < c for

x /∈ [x, x]. Hence, we get that

xU(1) + (1− x)U(x)− U(x) ≤ c. (A.6)

Similarly, let’s define

G(x) ≡ u(x) + λ(ā− x)(U(1) − U(0))− r(xU(1) + (1− x)U(0) − c).

Differentiating the previous equation twice we get that G′′(x) = u′′(x) > 0. Because U(·) is

continuously differentiable we have that G(x) = G(x) = 0. Hence, we can conclude that G(x) < 0

for all x ∈ (x, x). Accordingly,

0 ≥ u(x) + λ(ā− x)U ′(x)− rU(x), x ∈ [0, 1]. (A.7)

The final step is to verify that we can not improve the payoff using an alternative policy. Let

(T̃n)n≥1 and let x̃t be the belief process induce by this policy. Applying Ito’s lemma to the process

e−rtU(x̃t) we get

e−rtE[U(x̃t)] = U(x0) + E





∫ t

0
e−rs(λ(ā− x̃t)U

′(x̃t)− rU(x̃t))ds+
∑

s≤t

e−rs
(

x̃sU(1) + (1− x̃s)U(0) − U(x̃s))





≤ U(x0)− E





∫ t

0
e−rsu(x̃t)ds−

∑

s≤t

e−rsc



 , (A.8)
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where we have used inequalities (A.6) and (A.7). Taking the limit when t→ ∞ we conclude that

U(x0) ≥ E





∫ ∞

0
e−rsu(x̃t)ds−

∑

T̃n≥0

e−rT̃nc





The proof concludes noting that (A.8) holds with equality for the optimal policy.

B Linear Case: Alternative Proof of Proposition 3

Proof. Let T be the first monitoring time so the principal’s cost at time zero satisfies the recursion

C0 = E0[e
−rT ](c+ C0)

and the incentive compatibility constraint at time zero is

E0[e
−(r+λ)T ] ≥ q

We show that if there is any time τ such that the incentive compatibility constraint is slack, then

we can find a new policy that satisfies the IC constraint and yields a lower expected monitoring

cost to the principal. In fact, it is enough to show that if the IC constraint is slack at some time

τ̃ then we can find an alternative policy that leaves E0[e
−(r+λ)T ] unchanged at time zero, remains

IC at τ > 0 and reduces E0[e
−rT ]. We only consider the case in which there is positive density

just before τ̃ as the argument for the case in which there is an atom at τ̃ and zero probability

just before τ̃ is analogous. Suppose the IC constraint is slack at time τ̃ and let τ † = sup{τ <

τ̃ : IC constraint binds}: such a date must exist as otherwise we could postpone somewhat all

inspection times before τ̃ and still satisfy all IC constraints (obviously saving costs). Moreover, we

can assume without loss of generality that τ † = 0. Suppose the monitoring distribution F (τ) is

such that f(τ) > 0 for some interval (τ̃ − ǫ, τ̃ ), then we can find small ǫ0 and η and construct an

alternative monitoring distribution F̂ (τ) that coincides with F (τ) outside the intervals (0, ǫ0) and

(τ̃ − ǫ0, τ̃ + ǫ0). For any τ ∈ (τ̃ − ǫ0, τ̃) the density of the alternative policy is

f̂(τ) = f(τ)− η,

while for τ ∈ (0, ǫ0) it is

f̂(τ) = f(τ) + αη,

and for τ ∈ (τ̃ , τ̃ + ǫ0) it is

f̂(τ) = f(τ) + (1− α)η.
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We can pick α ∈ (0, 1) such that IC constraint is not affected at τ = 0, that is α ∈ (0, 1) satisfies

α

∫ ǫ0

0
e−(r+λ)τdτ + (1− α)

∫ τ̃+ǫ0

τ̃
e−(r+λ)τdτ −

∫ τ̃

τ̃−ǫ0

e−(r+λ)τdτ = 0,

and we can pick ǫ0 and η small enough so that the IC constraint still holds for all τ > 0. Because

the IC constraint is not affected at τ = 0 we have that

∫ ∞

0
e−(r+λ)τdF (τ) =

∫ ∞

0
e−(r+λ)τdF̂ (τ).

Define the random variable z ≡ e−(r+λ)τ , and let G and Ĝ be the respective CDFs of z. We have

that
∫ 1

0
zdG(z) =

∫ 1

0
zdĜ(z).

By construction G(z) and Ĝ(z) have same mean and cross only once which means that Ĝ(z) is a

mean-preserving spread of G(z). Noting that

∫ ∞

0
e−rτdF (τ) =

∫ 1

0
z

r

r+λdG(z),

where zr/(r+λ) is a strictly concave function, and using the fact that Ĝ(z) is a mean-preserving

spread of G(z), we immediately conclude that

∫ 1

0
z

r

r+λdĜ(z) <

∫ 1

0
z

r

r+λdG(z),

and so the monitoring distribution F̂ (τ) yields a lower cost of monitoring: This contradicts the

optimality of F (τ) and implies that the optimal policy must be such the IC constraint binds at all

time, hence it is given by a constant monitoring rate m∗.
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C Comparative Statics

C.1 Proof of Proposition 4

Comparative static c: Let Gdet and Grand be the maximization problems in the operators above

so we write the optimization in the fixed point problem as

max
α∈[0,1]

αGrand + (1− α)Gdet

We can fix the continuation values and show that we have single crossing in (c, UH , UL). In the

previous expressions, we have that

∂(Grand −Gdet)

∂(−c)
= e−rτ̂

(

r

r + λq
e(r+λ)τ̂ q +

λq

r + λq

)

− e−rτ̄

= eλτ̂q

(

r

r + λq
+ e−(r+λ)τ̂ λ

r + λq

)

− e−(r+λ)τ̄ eλτ̄

≤ eλτ̂q − e−(r+λ)τbindeλτ̄

=
(

eλτ̂ − eλτ̄
)

q

which is negative if τ̂ < τ̄ . Next, we have that

∂(Grand −Gdet)

∂UH
= e−rτ̂

[(

e(r+λ)τ̂ − 1

1− q

)

qxθτ̂ +

(

1− e(r+λ)τ̂ q

1− q

)

∫ ∞

τ̂
e−(r+m)(τ−τ̂ )mxθτdτ

]

− e−rτ̄xθτ̄

If we replace

∫ ∞

τ̂
e−(r+m)(τ−τ̂ )xθτdτ =

ā

r +m
+

xθτ̂ − ā

r + λ+m
∫ ∞

τ̂
e−(r+m)(τ−τ̂ )(1− xθτ )dτ =

1− ā

r +m
−

xθτ̂ − ā

r + λ+m
,

and after some tedious simplifications we obtain

∂(Grand −Gdet)

∂UH
= e−rτ̂

[

(1− q)e(r+λ)τ̂ m

r + λ
xθτ̂ +

(

1− e(r+λ)τ̂ q
) λ(1− q)

(r + λq)(r + λ)
mā

]

− e−rτ̄xθτ̄

= eλτ̂qxθτ̂ +
(

e−rτ̂ − eλτ̂q
) λq

r + λq
ā− e−rτ̄xθτ̄

Noticing that

eλτxθτ = θ + ā(eλτ − 1),
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we obtain

∂(Grand −Gdet)

∂UH
= eλτ̂qxθτ̂ +

(

e−rτ̂ − eλτ̂ q
) λq

r + λq
ā− e−rτ̄xθτ̄

= q (θ − ā) +

[

eλτ̂
r

r + λq
+ e−rτ̂ λ

r + λq

]

qā− e−(r+λ)τ̄
(

θ + ā(eλτ̄ − 1)
)

≤ q (θ − ā) +

[

eλτ̂
r

r + λq
+ e−rτ̂ λ

r + λq

]

qā− q(θ − ā)− e−rτ̄ ā

=

[

eλτ̂
r

r + λq
+ e−rτ̂ λ

r + λq

]

qā− e−rτ̄ ā

The last expression is increasing in τ̂ , which means that if τ̂ ≤ τ̄ then

∂(Grand −Gdet)

∂UH
≤ −eλτ̄

(

e−(r+λ)τ̄ − q
) rā

r + λq
≤ 0,

where the last inequality follows from the IC constraint. We can repeat the same calculations for

UL.

∂(Grand −Gdet)

∂UL
= e−rτ̂

[(

e(r+λ)τ̂ − 1

1− q

)

q(1− xθτ̂ ) +

(

1− e(r+λ)τ̂ q

1− q

)

∫ ∞

τ̂
e−(r+m)(τ−τ̂ )m(1− xθτ )dτ

]

− e−rτ̄ (1− xθτ̄ )

= eλτ̂q(1− xθτ̂ ) +
(

e−rτ̂ − eλτ̂ q
) λq

r + λq
(1− ā)− e−rτ̄ (1− xθτ̄ )

Replacing

1− xθτ = e−λτ (1− θ) + (1− e−λτ )(1 − ā)

we get that

∂(Grand −Gdet)

∂UL
= q(ā− θ) +

(

eλτ̂ q
r

r + λq
+ e−rτ̂

λq

r + λq

)

(1− ā)− e−rτ̄ (1− xθτ̄ )

= q(ā− θ) +

(

eλτ̂ q
r

r + λq
+ e−rτ̂

λq

r + λq

)

(1− ā)− e−(r+λ)τ̄
(

ā− θ + eλτ̄ (1− ā)
)

≤

[

eλτ̂
r

r + λq
+ e−rτ̂ λ

r + λq

]

q(1− ā)− e−rτ̄ (1− ā)

≤ 0

where the last inequality follows if τ̂ ≤ τ̄ by the same reason as in the case of UH . Hence, in order

to verify single crossing in (−c, UL, UH) it is enough to show that τ̂ ≤ τ̄ . Notice that, for a given

continuation value (UL, UH), the solution to the deterministic problem, τ̄ , is increasing in c, and

that whenever τ̄ < τbind (so the IC constraint is slack), the solution to the optimal control problem

must be τ̄ . Let c† = sup{c ≥ 0 : τ̄ < τbind}, so for any c < c† the solution for a given continuation
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value (UL, UH) is τ̄ . On the other hand, for any c ≥ c† we have that τ̄ = τbind ≥ τ̂ , which

means that Grand −Gdet satisfies single crossing in (UL, UH ,−c) which means that α(UH , UL, c) is

decreasing in UH , UL and increasing in c. Moreover, as UL and UH are both decreasing in c we

can conclude that α(UH(c), UL(c), c) is increasing in c, which means that there is c̃ such that for

any c ≤ c̃ the solution has deterministic monitoring while for any c > c̃ the solution has random

monitoring.

Next, we prove that random monitoring dominates deterministic monitoring when k is large

enough and when ā is high or low enough. For this, it is enough to establish that full random

monitoring (that is τ̂ = 0) dominates fully deterministic as this guarantees that some randomization

is going to be used in the optimal policy. Before proving the statements in the proposition, we

start proving the following lemma:

Lemma C.1. For any q ∈ (0, 1),

e−rτbind >
m∗

r +m∗

Proof. If we let β ≡ r/(r + λ), then by replacing τbind and m∗ we can verify that it is enough to

show that

qβ −
q

β(1− q) + q
> 0.

Consider the function

H(q) ≡ βqβ−1 + (1− β)qβ − 1,

so we need to show that H(q) > 0 for all q ∈ (0, 1). The function H is such H(0) > 0 and H(1) = 0.

Moreover, the derivate of H is given by

H ′(q) = β(β − 1)qβ−2 + (1− β)βqβ−1 = −β(1− β)qβ−2(1− q) < 0,

and so it follows that H(q) > 0 for all q ∈ (0, 1).

Optimality of random monitoring for large k: We compare the payoff of deterministic

monitoring with the payoff of full random monitoring (that is τ̂ = 0) when k converges to its

upper bound, λ/(r + λ) and show that the difference between the benefit of using random and

deterministic monitoring converge to zero while the difference in their cost remains bounded away

of zero. For large k, we can restrict attention to monitoring policies in which the IC constraint

is binding, and it is enough to compare policies that rely exclusively on deterministic or random

monitoring (the argument to rule out policies that alternate between random and deterministic

depending on θTn−1 is analogous).

First, we look at the difference in the cost. The cost of a deterministic policy is

Cdet =
e−rτ

1− e−rτ
=

qβ

1− qβ
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while the cost of the random policy is

Crand =
m∗

r
=

1

β

q

1− q
.

The difference in the cost is

Cdet − Crand =
qβ

1− qβ
−

1

β

q

1− q
=

1

β

βqβ − q + (1− β)qβ+1

1− q − qβ + qβ+1
,

and applying L’Hopital’s rule twice we find that

lim
q→1

βqβ − q + (1 − β)qβ+1

1− q − qβ + qβ+1
= lim

q→1

β2qβ−1 − 1 + (1− β)(1 + β)qβ

−1− βqβ−1 + (β + 1)qβ

= lim
q→1

β(β − 1) + (1− β2)q

(1− β) + (β + 1)q

=
1− β

2
> 0

Next, we look at the benefit of monitoring (excluding its cost). First, we compute the benefit of a

deterministic policy. The benefit of the deterministic policy, Bdet
θ , solves the system of equations

Bdet
L =

∫ τ

0
e−rtu(xLt )dt+ e−rτ (xLτ B

det
H + (1− xLτ )B

det
L )

Bdet
H =

∫ τ

0
e−rtu(xHt )dt+ e−rτ (xHτ B

det
H + (1− xHτ )Bdet

L ).

Solving this system we get that the payoff is given by

Bdet
L =

∫ τ
0 e

−rtu(xLt )dt

1− e−rτ
+

e−rτxLτ
1− e−rτ (xHτ − xLτ )

∫ τ
0 e

−rt(u(xHt )− u(xLt ))dt

1− e−rτ

Bdet
H =

∫ τ
0 e

−rtu(xHt )dt

1− e−rτ
−

e−rτ (1− xHτ )

1− e−rτ (xHτ − xLτ )

∫ τ
0 e

−rt(u(xHt )− u(xLt ))dt

1− e−rτ
,

and taking the limit when τ → 0 (which is equivalent to taking the limit when k → λ/(r + λ)) we

get that

Bdet
L →

1

r

(

r + λ(1− ā)

r + λ
u(0) +

λā

r + λ
u(1)

)

Bdet
H →

1

r

(

λ(1− ā)

r + λ
u(0) +

r + λā

r + λ
u(1)

)
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On the other hand, the benefit of the random policy is

Brand
L =

∫ ∞

0
e−(r+m∗)t(u(xLt ) +m∗(xLt B

rand
H + (1− xLt )B

rand
L ))dt

Brand
H =

∫ ∞

0
e−(r+m∗)t(u(xHt ) +m∗(xHt B

rand
H + (1− xHt )Brand

L ))dt,

where

Brand
L =

∫ ∞

0
e−(r+m∗)tu(xLt )dt+

m∗

r +m∗
Brand

L +
m∗λā

(r +m∗)(r + λ+m∗)
(Brand

H −Brand
L )

Brand
H =

∫ ∞

0
e−(r+m∗)tu(xHt )dt+

m∗

r +m∗
Brand

L +

[

m∗

r + λ+m∗
+

m∗λā

(r +m∗)(r + λ+m∗)

]

(Brand
H −Brand

L )

From here we get

Brand
H −Brand

L =
r + λ+m∗

r + λ

∫ ∞

0
e−(r+m∗)t(u(xHt )− u(xLt ))dt

So, replacing in the previous equations

Brand
L =

r +m∗

r

∫ ∞

0
e−(r+m∗)tu(xLt )dt+

m∗λā

r(r + λ)(r +m∗)

∫ ∞

0
(r +m∗)e−(r+m∗)t(u(xHt )− u(xLt ))dt.

We can also write

Brand
H −Brand

L =
r + λ+m∗

(r + λ)(r +m∗)

∫ ∞

0
(r +m∗)e−(r+m∗)t(u(xHt )− u(xLt ))dt

From here we get that when m∗ → ∞ the benefit converges to

Brand
L →

1

r

(

r + λ(1− ā)

r + λ
u(0) +

λā

r + λ
u(1)

)

,

and

Brand
H −Brand

L →
1

r + λ
(u(1) − u(0))

so

Brand
H →

1

r

(

λ(1− ā)

r + λ
u(0) +

r + λā

r + λ
u(1)

)

Comparing the limit of the deterministic and random policy we verify that both yield the same

benefit in the limit of Cdet − Crand is strictly positive, which means that the random policy domi-

nates.
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Optimality of random monitoring following θTn−1 = H for large ā: First, we find an upper

bound for payoff of following a deterministic policy

Gθ
det (U) =

∫ τ

0
e−rtu

(

xθt

)

dt+ e−rτ [UL − c+ a∆U + (θ − a) e−λτ∆U ]

<
u(1)

r
(1− e−rτ ) + e−rτ (UH − c)

≤
u(1)

r
(1− e−rτbin) + e−rτbin(UH − c)

=
u(1)

r
(1− q

r

r+λ ) + q
r

r+λ (UH − c)

Next, we find a lower bound for the payoff of following a random policy

Gθ
rand (U) =

∫ ∞

0
e−(r+m∗)t

[

u
(

xθt

)

+m∗M
(

U, xθt

)]

dt

>

∫ ∞

0
e−(r+m∗)tdt [u(ā) +m∗(āUH + (1− ā)UL − c)]

=
u(ā)

r +m∗
+
m∗(āUH + (1− ā)UL − c)

r +m∗

Finally, we show that if ā is large enough, then the upper bound for Gθ
det (U) is below the lower

bound for Gθ
rand. This requires that for any U we have

u(1)

r
(1− q

r

r+λ ) + q
r

r+λ (UH − c) ≤
u(ā)

r +m∗
+
m∗(āUH + (1− ā)UL)

r +m∗

Following the proof in Lemma C.1, we let β ≡ r
r+λ so we can write

u(ā)

r +m∗
+
m∗(āUH + (1− ā)UL)

r +m∗
=
u(ā)

r
(1− qβ) + u(ā)

(

qβ − 1

r
+

1

r +m∗

)

+ qβ(āUH + (1− ā)UL − c)

+

(

m∗

r +m∗
− qβ

)

(āUH + (1− ā)UL − c)

Letting ∆U ≡ UH − UL, we write our required inequality as

(

u(1)

r
−
u(ā)

r

)

(1− qβ) ≤
u(ā)

r

(

qβ −
m∗

r +m∗

)

+

(

m∗

r +m∗
− qβ

)

(UH − c)−
m∗

r +m∗
(1− ā)∆U,

and after replacing m∗ we reduce it to

(

u(1)

r
−
u(ā)

r

)

(1− qβ) ≤

(

u(ā)

r
+ c− UH

)(

qβ −
q

β(1− q) + q

)

−
q(1− ā)∆U

β(1− q) + q

12



Clearly, it must be the case that u(1)
r > UH , which means that

lim
ā→1

(

u(1)

r
−
u(ā)

r

)

(1− qβ) = 0

<

(

u(1)

r
+ c− UH

)(

qβ −
q

β(1− q) + q

)

= lim
ā→1

{(

u(ā)

r
+ c− UH

)(

qβ −
q

β(1− q) + q

)

−
q(1− ā)∆U

β(1 − q) + q

}

,

and so there is ǫ > 0 such that for all ā ∈ (1− ǫ, 1) we have that Gθ
det (U) < Gθ

rand (U)

Optimality of random monitoring following θTn−1 = L for small ā: The proof follows a

similar argument as the one for large ā. The payoff of the deterministic policy satisfies the inequality

Gθ
det (U) <

∫ τ

0
e−rtu (a) dt+ e−rτ [UL − c+ a∆U + (θ − a) e−λτ∆U ]

=
u (a)

r

(

1− e−rτ
)

+ e−rτ [UL − c+ a∆U
[

1− e−λτ
]

]

Replacing τbind and taking the limit when ā goes to zero we find

lim
a→0

Gθ
det (U) <

u (0)

r

(

1− e−rτbind
)

+ e−rτbind lim
a→0

[UL − c]

Similarly, the payoff of the random policy satisfies

Gθ
rand (U) =

∫ ∞

0
e−(r+m∗)t

[

u
(

xθt

)

+m∗M
(

U, xθt

)]

dt

=
1

r +m∗

∫ ∞

0
(r +m∗) e−(r+m∗)t

[

u
(

xθt

)

+m∗M
(

U, xθt

)]

dt

>
[u
(

aλ
r+m+λ

)

+ aλ
r+m+λm

∗UH +m∗(1− aλ
r+m+λ)UL −m∗c]

r +m∗
,

and so the limit when ā goes to zero is

lim
a→0

Gθ
rand (U) >

ru(0)r +m∗ lima→0 (UL − c)

r +m∗

In the limit, it must be the case that u(0)
r ≥ lima→0 (UL − c): If fact

lim
a→0

UL < lim
a→0

E

[∫ ∞

0
e−rtu (θt) dt|θ0 = L

]

,
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and by dominated convergence

lim
a→0

E

[∫ ∞

0
e−rtu (θt) dt|L

]

=

∫ ∞

0
e−rt lim

a→0
E [u (θt) |θ0 = L] dt

=
u (0)

r
.

From Lemma C.1 we have that e−rτbind > m∗

r+m∗ , and so it follows that

lim
a→0

Gθ
rand (U)− lim

a→0
Gθ
det (U) > 0.

This means that there is ǫ > 0 such that the random policy dominates the deterministic policy for

any ā ∈ (0, ǫ)

Optimality of monitoring at constant rate m∗ when λ→ ∞. We verify that when λ→ ∞,

the optimal policy is full random monitoring. With full random monitoring, we have that

Uθ =

∫ ∞

0
e−(r+m∗)τ

(

u(xθτ ) +m∗
(

UL + xθτ (UH − UL)− c
))

dτ

=
m∗

r +m∗
(UL + ā(UH − UL)− c) +

m∗

r +m∗ + λ
(θ − ā)(UH − UL)

+

∫ ∞

0
e−(r+m∗)τu

(

θe−λτ + ā(1− e−λτ )
)

dτ.

From here we get that

UH −UL =
m∗

r +m∗ + λ
(UH −UL) +

∫ ∞

0
e−(r+m∗)τ

[

u
(

e−λτ + ā(1− e−λτ )
)

− u
(

ā(1− e−λτ )
)]

dτ

Substituting

m∗ = (r + λ)
q

1− q
,

and solving for UH − UL we get

UH − UL =
1

1− q

∫ ∞

0
e−(r+m∗)τ

[

u
(

e−λτ + ā(1− e−λτ )
)

− u
(

ā(1− e−λτ )
)]

dτ

From here we get that limλ→∞(UH − UL) = 0 and limλ→∞m∗(UH − UL) = 0. We also have that

r(UL − c) = ām∗(UH − UL)− (r +m∗)c+
r +m∗

r +m∗ + λ
(θ − ā)m∗(UH − UL)

+

∫ ∞

0
(r +m∗)e−(r+m∗)τu(xθτ )dτ

→λ→∞,c→0,λc<∞= u(xθ0)−
k

1− k
cλ,
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where cλ ≡ limλ→∞,c→0 λc <∞. Having solved for the limits of UH −UL and UL− c, the next step

is to verify that in the limit

hθ(0) <

∫ ∞

0
ρe−ρτhθ(τ)dτ,

which, by Proposition 2, would provide a verification that constant monitoring at ratem∗ is optimal.

Substituting the definition of hθ and ρ = r + λ+m∗ we get that

hθ(0)−

∫ ∞

0
ρe−ρτhθ(τ)dτ = u(xθ0)−

(

1 +
λ(1− q)

r + λq

)
∫ ∞

0
(r +m∗)e−(r+m∗)τu(xθτ )dτ

+
λ(1− q)

r + λq
r (UL + ā(UH − UL)− c)

Taking the limit we get

lim
λ→∞,c→0,cλ<∞

(

hθ(0) −

∫ ∞

0
ρe−ρτhθ(τ)dτ

)

= −cλ < 0.

C.2 Proof of Proposition 6

Proof. For the first part, notice that the existence of c̃† follows directly from Proposition 2a. Next,

let’s define

Hdet(τ̄) ≡

∫ τ̄
0 e

−rτγΣτdτ + e−rτ̄c

1− e−rτ̄

Hrand(τ̂) ≡

∫ τ̂
0 e

−rτγΣτdτ + e−rτ̂

(

1−e(r+λ)τ̂q

1−q

)

∫∞
τ̂ e−(r+m∗)(τ−τ̂ )γΣτdτ + δ(τ̂ )c

1− δ(τ̂ )

We have that

Hdet
cτ̄ = −

re−rτ̄

(1− e−rτ̄ )2
< 0

Hrand
cτ̂ =

δ′(τ̂ )

(1− δ(τ̂ ))2
> 0,

which means that τ̄ is increasing in c, and τ̂∗ is decreasing in c and p∗ is increasing in c.

Next, let’s consider the comparative statics with respect to k. First, notice that Hdet(τ̄ , c) is

independent of k and that the cost of effort becomes relevant only once the incentive compatibility

constraint is binding. Next, we consider the maximization of Hrand(τ̂). Because k enters into the

maximization problem only through q it is enough to show that τ̂ is decreasing in q. After some

lengthy computations, we have that Hτ̂ = 0 if and only if

g̃(τ̂ , q) ≡ r(r+λ(2−q)) (2c̃λ(r + 2λ)− 1)+2qr(r+2λ)e−λτ̂−(r+2λ)(r+λq)e−2λτ̂+2λ2qe−(r+2λ)τ̂ = 0
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Let z ≡ e−(r+2λ)τ̂ and write

g(z, q) ≡ g̃(− log(z)/(r + 2λ), q) = r(r + λ(2− q)) (2c̃λ(r + 2λ)− 1)

+ 2qr(r + 2λ)z
λ

r+2λ − (r + 2λ)(r + λq)z
2λ

r+2λ + 2λ2qz. (C.1)

The incentive compatibility constraint requires that τ̂ ≤ τbind, which means that

z ≥ q
r+2λ
r+λ .

It follows from here that

gz(z, q) = 2qrλz−
r+λ

r+2λ − 2λ(r + λq)z−
r

r+2λ + 2λ2q

≤ 2λ
(

r + λq
)

(

1− z−
r

r+2λ

)

≤ 0.

so we only need to verify that gq(z, q) > 0. Notice that g(z, q) is linear in q, so we can write

g(z, q) = g0(z)+ g1(z)q. Hence, if g(ẑ, q) = 0, then it must be the case that g1(ẑ)q = −g0(ẑ), which

means that it is enough to show that g0(ẑ) < 0 evaluated at the solution. Substituting in equation

(C.1) we have that

g0(z) = r(r + 2λ)
[

2c̃λ(r + 2λ)−
(

1 + z
2λ

r+2λ

)]

< 0,

where the last inequality follows from the condition in the Proposition

c̃ ≤
1

2λ(r + 2λ)
.

Finally, we verify that the optimal policy in the i.i.d. limit is random. From the first order condition

for τ̂ , the optimal policy is random if g(1, q) ≥ 0, which reduces to

λc̃ ≥
1− q

r + λ(2− q)
.

When this condition holds, the optimal policy is monitoring with a constant hazard rate starting

at time zero. The left-hand side converges to zero as λ → ∞, so indeed, random monitoring is

optimal.
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D Proofs of Analysis Using Optimal Control

D.1 Existence: Proof of Lemma 6

Proof. The first step in the proof is to show that the operator Gθ has a unique fixed point. Let’s

denote the vector of expected payoffs by U ≡ (UL, UH). We have that Umax = (u(1)−kā)/r <∞ is

an upper bound for the principal payoff. The monitoring policy mt = 0, and τ̄ solving e−(r+λ)τ̄ = q

provides a lower bound Umin
θ > −∞. We consider the rectangle R = [Umin

L , Umax]× [Umin
H , Umax].

Let G θ
ǫ be the Bellman operator with the extra constraint that E(e−rT ) =

∫∞
0 e−rtdF (t) ≤ e−rǫ.

For any bounded functions f, g we have that | sup f − sup g| ≤ sup |f − g|, and so because the

function Gǫ = (G L
ǫ ,G

H
ǫ ) is bounded in R, we have that

‖GǫU
0 − GǫU

1‖ ≤ e−rǫ‖U0 − U1‖.

Hence, by the Contraction Mapping Theorem there is a unique fixed-point GǫUǫ = Uǫ. For any

sequence ǫk ↓ 0 we have that the sequence Uǫk is increasing and bounded above by Umax: Accord-

ingly, Uǫk converges to some limit U , and because Gǫ is lower semicontinuous as a function of ǫ

(Aliprantis and Border, 2006, Lemma 17.29) we also have that

lim
ǫk↓0

GǫkUǫk ≥ GU.

On the other hand, Gǫ is increasing in U , decreasing in ǫ and Uǫk is an increasing sequence so

lim
ǫk↓0

GǫkUǫk ≤ GU.

Accordingly, limǫk↓0 GǫkUǫk = GU and we conclude that

U = lim
ǫk↓0

Uǫk = lim
ǫk↓0

GǫkUǫk = GU.

The next step is to show that a solution to the maximization problem exists. To prove existence,

we consider the space of probability measures over R+∪{∞}, which we denote by P, endowed with

the weak* topology. The extended reals R+ ∪ {∞} are a metrizable compact space so by Theorem

15.11 in Aliprantis and Border (2006) the space P is compact in the weak* topology. The incentive

compatibility constraint can be written
∫∞
τ e−(r+λ)(s−τ)dF (s) ≥ q(1−F (τ−)) for all τ ∈ R+∪{∞}

which means that the set of incentive compatible monitoring policies is a closed subset of P, and

so a compact set. Finally, the objective function is a bounded linear functional on C(R+∪{∞}) so

it is continuous in the weak* topology, and thus is maximized by some incentive compatible policy

F ∗.
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D.2 Proof of Theorem 1 Using Optimal Control

Proof of Lemma 8

Proof. At any point of continuity we have that

dντ = −λντdτ − dΦτ . (D.1)

We also have the optimality conditions

S(τ) ≤ 0 (D.2a)

Mτ =

∫ τ

0
1{S(u)=0}dMu. (D.2b)

Condition (D.2a) corresponds to

S(τ) = M(U, xθτ )− Uτ − (1− qτ )ντ ≤ 0.

Differentiation S(τ) we find

dS(τ) =ẋθτ (UH − UL)dτ − dUτ + ντdqτ − (1− qτ )dντ

=ẋθτ (UH − UL)dτ −
(

rUτ − u(xθτ )
)

dτ −
(

Uτ −M(U, xθτ )
)

dM c
τ

+ ντ ((r + λ)qτdt− (1− qτ )dM
c(τ)) + (1− qτ ) (λντdτ + dΦτ )

=
(

ẋθτ (UH − UL) + u(xθτ )− rUτ + ντ (rqτ + λ)
)

dt+ (1− qτ )dΦτ + S(τ)dM c
τ

The optimality condition (D.2b) implies that S(τ)dMτ = 0. Thus we can write the evolution of

S(τ) as

dS(τ) =
(

ẋθτ (UH − UL) + u(xθτ )− rUτ + ντ (rqτ + λ)
)

dt+ (1− qτ )dΦτ . (D.3)

Whenever qτ > q we have that dΦτ = 0, which means that S(τ) is absolutely continuous in any

interval (τ ′, τ ′′) with qτ > q (notice that qτ is continuous between jumps so wlog we can assume

that if qτ̃ > q at some time τ̃ between jumps then there is neighborhood of τ̃ such that qτ > q) .

Note as well that S(τ)dM c
τ = 0 implies that we can write

dUτ =
(

rUτ − u(xθτ )
)

dτ − (1− qτ )ντdM
c
τ (D.4)

Let Ṡ(τ) denote the drift of S(τ), which is given by

Ṡ(τ) ≡ ẋθτ (UH − UL) + u(xθτ )− rUτ + ντ (rqτ + λ). (D.5)

Differentiating Ṡ(τ) we find

dṠ(τ) =
(

ẍθτ (UH − UL) + u′(xθτ )ẋ
θ
τ

)

dτ − rdUτ + (rqτ + λ)dντ + rντdqτ (D.6)
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Replacing equations (D.1) and (D.4), and the equation for dqτ in (D.6) we find that

dṠ(τ) =
(

r−1ẍθτ (UH − UL) + r−1u′(xθτ )ẋ
θ
τ − rUτ + u(xθτ ) + r−1(r2qτ − λ2)ντ

)

dτ. (D.7)

The support of M c
τ is A ≡ {τ : S(τ) = 0}, which correspond to the set of maximizers of S(τ).

Accordingly, for any time τ ∈ A, we have that S(τ) = Ṡ(τ) = 0 and S̈(τ) ≤ 0. Suppose that there

is τ̃ such that S(τ) = 0, Ṡ(τ̃) = 0 and S̈(τ̃ ) = 0, and replacing S(τ̃ ) = 0 and ẍθτ = −λẋθτ in (D.7),

then we get that it must be the case that

ντ̃ =
ẋθτ̃

λ(r + λ)

(

u′(xθτ̃ )− (r + λ)(UH − UL)
)

(D.8)

Let’s define

zτ ≡
ẋθτ

λ(r + λ)

(

u′(xθτ )− (r + λ)(UH − UL)
)

.

Differentiating zτ we get

dzτ =

(

ẍθτ
λ(r + λ)

(

u′(xθτ )− (r + λ)(UH − UL)
)

+
(ẋθτ )

2

λ(r + λ)
u′′(xθτ )

)

dt

=

(

ẍθτ
ẋθτ
zτ +

(ẋθτ )
2

λ(r + λ)
u′′(xθτ )

)

dτ

=

(

−λzτ +
(ẋθτ )

2

λ(r + λ)
u′′(xθτ )

)

dτ

On the other hand, whenever qτ > q we have that dΦτ = 0 so

dντ = −λντdτ.

Accordingly

d(ντ − zτ ) = −λ(ντ − zτ )dτ −
(ẋθτ )

2

λ(r + λ)
u′′(xθτ )dτ,

so for any τ > τ̃

ντ − zτ =

∫ τ

τ̃
e−λ(τ−s) (ẋθs)

2

λ(r + λ)
u′′(xθs)ds > 0.

This means that there is at most one τ̃ ∈ A satisfying equation (D.8), which means that there is

at most one τ̃ ∈ A such that S̈(τ̃) = 0, and any other τ ∈ A satisfies S̈(τ) < 0. This means that

all, but at most one, τ ∈ A, are isolated points. And, by Theorem 7.14.23 in (Bogachev, 2007),

the only atomless measure in A is the trivial zero measure, which means that M c
τ −M c

τ ′ = 0 for all

τ ∈ [τ ′, τ ′′)
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Proof of Lemma 9

Proof. The first step is to verify that S(τ) is continuous at any atom τk. We have that

S(τk−) = M(U, xθτk )− Uτk− − ντk−(1− qτk−)

Using the fact that ντ satisfies

ντ = ν0 −

∫ τ

0
λνsds− Φτ , (D.9)

we find that

S(τk) = M(U, xθτk )− Uτk − (ντk− −∆Φτk)(1− qτk)

= e∆Md
τ
k

(

M(U, xθτk )− Uτk− − (ντk− −∆Φτk)(1 − qτk−)
)

= e∆Md
τ
k (S(τk−) + ∆Φτk(1− qτk))

= e∆Md
τ
k∆Φτk(1− qτk),

where we have used that S(τk) = 0 at any atom τk. Because S(τk) ≤ 0 and Φτ is non-decreasing,

we can conclude that ∆Φτk = 0, which means that ντ is continuous at τk. Hence, at any jump

atom, the following necessary condition must hold

rM(U, xθτk) = u(xθτk) + ẋθτk(UH − UL) + (r + λ)ντk− (D.10)

The objective now is to show that equation (D.10) cannot be satisfied at more than one point.

Let’s define

G(τ) ≡ u(xθτ ) + ẋθτ (UH − UL) + (r + λ)ντ − rM(U, xθτ )

We have from equation (D.3) that

dS(τ) = Ṡ(τ)dτ + (1− qτ )dΦτ ,

where we notice that

Ṡ(τ) = u(xθτ ) + ẋθτ (UH − UL)− rUτ + ντ (rqτ + λ) = rS(τ) +G(τ). (D.11)

Accordingly, for any atom τk, the following conditions must be satisfied

S(τk−) = 0

G(τk−) = 0

Ṡ(τk−) = 0.

As ∆Φτk = 0, then both G(τ) and S(τ) are continuous at the atom τk, and G(τk) = S(τk) = 0,

which means that Ṡ(τk) = 0. Moreover, because τk is a local maximum of S(τ), and S(τ) is

20



differentiable at τk, it follows that that S̈(τk−) ≤ 0. Equation (D.11) then implies that Ġ(τk−) ≤ 0.

Differentiating G(τ), we find that

dG(τ) =
(

u′(xθτ )ẋ
θ
τ − (r + λ)

(

ẋθτ (UH − UL) + λντ
)

)

dτ − (r + λ)dΦτ

Let’s J(τ) be given by

J(τ) ≡ u′(xθτ )ẋ
θ
τ − (r + λ)ẋθτ (UH − UL)− (r + λ)λντ . (D.12)

Notice that whenever the IC constraint is slack we have Ġ(τ) = J(τ), so in particular Ġ(τk−) =

J(τk−) for any atom τk. Next, if we differentiate equation (D.12) we get

dJ(τ) =
(

u′′(xθτ )(ẋ
θ
τ )

2 − λu′(xθτ )ẋ
θ
τ − (r + λ)(−λẋθτ )(UH − UL)

)

dτ − λ(r + λ)dντ

=
(

u′′(xθτ )(ẋ
θ
τ )

2 − λu′(xθτ )ẋ
θ
τ + (r + λ)λẋθτ (UH − UL)

)

dτ + λ(r + λ)(λντdτ + dΦτ )

=
(

u′′(xθτ )(ẋ
θ
τ )

2 − λu′(xθτ )ẋ
θ
τ + (r + λ)λ(ẋθτ (UH − UL) + λντ )

)

dτ + λ(r + λ)dΦτ ,

which can be rewritten as

dJ(τ) =
(

u′′(xθτ )(ẋ
θ
τ )

2
)

dτ − λJ(τ)dτ + λ(r + λ)dΦτ .

Thus, for any τ ∈ [τk, τk+1) we have

J(τ) = −

∫ τk+1

τ
eλ(s−τ)

(

(ẋθs)
2u′′(xθs)ds+ λ(r + λ)dΦs

)

+ eλ(τk+1−τ)J(τk+1−)

= −

∫ τk+1

τ
eλ(s−τ)

(

(ẋθs)
2u′′(xθs)ds+ λ(r + λ)dΦs

)

+ eλ(τk+1−τ)Ġ(τk+1−) < 0,

where we have used the fact that J(τk+1−) = Ġ(τk+1−) ≤ 0. But then,

dG(τ) = J(τ)dτ − (r + λ)dΦτ < 0

for all τ ∈ (τk, τk+1) which contradicts the requirement that G(τk+1−) = 0.

Proof of Theorem 1

Proof. Lemma 8 implies that, in the absence of an atom, qτ is increasing if qτ > q because qτ

increases whenever dM c∗
τ = 0. Hence, because there is at most one atom, this means that either

there is monitoring with probability one at the atom, or the incentive compatibility constraint is

binding thereafter. If this were not the case, qτ would eventually reach one, which would require

a second atom and contradict lemma 9. Thus lemmas 8 and 9 imply that the optimal monitoring

policy takes the following form:
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1. There is τ̃ such that for any τ ∈ [0, τ̃ ) we have qτ = q.

2. There is τ̂ such that for any τ ∈ [τ̃ , τ̂ ) there is no monitoring and qτ > q.

3. There is an atom at time τ̂ . If the probability of monitoring at the atom is less than one,

then there is a constant rate of monitoring after τ̂ .

Thus, the problem of solving for the optimal policy is reduced to finding τ̃ and τ̂ . The last step of

the proof shows that τ̃ is either zero or infinity. The intuition is the following. Analogous to standard

contracting models, equation (D.1) works as a promise-keeping constraint. Equation (D.2) implies

that the largest possible atom consistent with qτ− is (qτ−−q)/(1−q), which corresponds to the atom

in Theorem 1. On the other hand, once the incentive compatibility constraint is binding, equation

(D.1) implies that the largest monitoring rate consistent with the promise-keeping and the incentive

compatibility constraint is m∗. Thus, because the benefit of monitoring is increasing over time,

the optimal policy requires to perform as much monitoring as possible once it becomes profitable

to do so. Hence, the support of the monitoring distribution is either a singleton (deterministic

monitoring) or an interval [τ̂ ,∞].

First, notice that any atom has to be of size

∆Md
τ = log

(

1− q

1− qτ−

)

,

and that the continuation payoff at the atom date satisfies

Uτ− =

(

1− qτ−
1− q

)

Uτ +

(

qτ− − q

1− q

)

M(U, xθτ )

Whenever the IC constraint is binding on an interval of time, the monitoring rate is given by

m = (r + λ)
q

1− q
.

The payoff at time zero of a policy with monitoring at a rate m in [0, τ̃ ) and an atom at time

τ̂ = τ̃ + δ is

U(τ̃ , δ) =

∫ τ̃

0
e−(r+m)τ

(

u(xθτ ) +mM(U, xθτ )
)

dτ +

∫ τ̃+δ

τ̃
e−rτ−mτ̂u(xθτ )dτ

+ e−r(τ̃+δ)−mτ̃

[(

1− qτ̃+δ−

1− q

)

Uτ̃+δ +

(

qτ̃+δ− − q

1− q

)

M(U, xθτ̃+δ)

]

(D.13)

where

Uτ̃+δ =

∫ ∞

τ̃+δ
e−(r+m)(τ−τ̃−δ)

(

u(xθτ ) +mM(U, xθτ )
)

dτ

Suppose that the IC constraint is binding at time 0, that is assume that q0 = q, then we have that

qτ̃+δ− = e(r+λ)δq,
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which means that δ must satisfy

δ ≤
1

r + λ
log

1

q
.

Replacing qτ̃+δ− in (D.13) we get

U(τ̃ , δ) =

∫ τ̃

0
e−(r+m)τ

(

u(xθτ ) +mM(U, xθτ )
)

dτ +

∫ τ̃+δ

τ̃
e−rτ−mτ̃u(xθτ )dτ

+ e−r(τ̃+δ)−mτ̃

[(

1− e(r+λ)δq

1− q

)

Uτ̃+δ +

(

e(r+λ)δ − 1

1− q

)

qM(U, xθτ̃+δ)

]

(D.14)

Next, we show that for any given δ we have that ∂U(τ̃ , δ)/∂τ̃ = 0 ⇒ ∂2U(τ̃ , δ)/∂τ̃2 > 0. This

means that the maximum cannot have an interior value for τ̃ .

Differentiating (D.14) we get

∂

∂τ̃
U(τ̃ , δ) = e−(r+m)τ̃

(

u(xθτ̃ ) +mM(U, xθτ̃ )
)

+ e−r(τ̃+δ)−mτ̃u(xθτ̃+δ)− e−(r+m)τ̃u(xθτ̃ )

−m

∫ τ̃+δ

τ̃
e−rτ−mτ̃u(xθτ )dτ−(r+m)e−r(τ̃+δ)−mτ̃

[(

1− e(r+λ)δq

1− q

)

Uτ̃+δ +

(

e(r+λ)δ − 1

1− q

)

qM(U, xθτ̃+δ)

]

+ e−r(τ̃+δ)−mτ̃

[(

1− e(r+λ)δq

1− q

)

∂

∂τ̃
Uτ̃+δ +

(

e(r+λ)δ − 1

1− q

)

qẋθτ̃+δ(UH − UL)

]

where
∂

∂τ̃
Uτ̃+δ = −u(xθτ̃+δ)−mM(U, xθτ̃+δ) + (r +m)Uτ̃+δ
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Rearranging terms we get

∂

∂τ̃
U(τ̃ , δ) = e−(r+m)τ̃

[

mM(U, xθτ̃ ) + e−rδu(xθτ̃+δ)

−m

∫ τ̃+δ

τ̃
e−r(τ−τ̃)u(xθτ )dτ − (r +m)

(

eλδ − e−rδ

1− q

)

qM(U, xθτ̃+δ)

−

(

e−rδ − eλδq

1− q

)

(

u(xθτ̃+δ) +mM(U, xθτ̃+δ)
)

+

(

eλδ − e−rδ

1− q

)

qẋθτ̃+δ(UH − UL)

]

= e−(r+m)τ̃

[

mM(U, xθτ̃ ) + (eλδ − e−rδ)

(

q

1− q

)

u(xθτ̃+δ)

−m

∫ τ̃+δ

τ̃
e−r(τ−τ̃)u(xθτ )dτ − (r +m)(eλδ − e−rδ)

(

q

1− q

)

M(U, xθτ̃+δ)

−

(

e−rδ − eλδq

1− q

)

mM(U, xθτ̃+δ) + (eλδ − e−rδ)

(

q

1− q

)

ẋθτ̃+δ(UH − UL)

]

= e−(r+m)τ̃m

[

M(U, xθτ̃ ) +
(eλδ − e−rδ)

r + λ
u(xθτ̃+δ)

−

∫ τ̃+δ

τ̃
e−r(τ−τ̃)u(xθτ )dτ − (r +m)

(eλδ − e−rδ)

r + λ
M(U, xθτ̃+δ)

−

(

e−rδ − eλδq

1− q

)

M(U, xθτ̃+δ) +
(eλδ − e−rδ)

r + λ
ẋθτ̃+δ(UH − UL)

]

So, finally, we can write

∂

∂τ̃
U(τ̃ , δ) = e−(r+m)τ̃m

[

M(U, xθτ̃ ) +
(eλδ − e−rδ)

r + λ
u(xθτ̃+δ)

−

∫ τ̃+δ

τ̃
e−r(τ−τ̃)u(xθτ )dτ −

(

r

r + λ
eλδ +

λ

r + λ
e−rδ

)

M(U, xθτ̃+δ) +
(eλδ − e−rδ)

r + λ
ẋθτ̃+δ(UH − UL)

]

Let’s define

G(τ̃ ) = M(U, xθτ̃ ) +
(eλδ − e−rδ)

r + λ
u(xθτ̃+δ)

−

∫ τ̃+δ

τ̃
e−r(τ−τ̃ )u(xθτ )dτ −

(

r

r + λ
eλδ +

λ

r + λ
e−rδ

)

M(U, xθτ̃+δ) +
(eλδ − e−rδ)

r + λ
ẋθτ̃+δ(UH − UL)

So
∂

∂τ̃
U(τ̃ , δ) = e−(r+m)τ̃mG(τ̃ )

Clearly, the first order condition is satisfied only if G(τ̃ ) = 0. Moreover, G(τ̃ ) = 0 implies that
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∂2

∂τ̃2
U(τ̃ , δ) = G′(τ̃ ). Differentiating G(τ̃ ) we get

G′(τ̃) = ẋθτ̃ (UH − UL) +
(eλδ − e−rδ)

r + λ
u′(xθτ̃+δ)ẋ

θ
τ̃+δ − e−rδu(xθτ̃+δ) + u(xθτ̃ )

− r

∫ τ̃+δ

τ̃
e−r(τ−τ̃)u(xθτ )dτ −

(

r

r + λ
eλδ +

λ

r + λ
e−rδ

)

ẋθτ̃+δ(UH − UL) +
(eλδ − e−rδ)

r + λ
ẍθτ̃+δ(UH − UL)

= ẋθτ̃ (UH − UL) +
(eλδ − e−rδ)

r + λ
u′(xθτ̃+δ)ẋ

θ
τ̃+δ − e−rδu(xθτ̃+δ) + u(xθτ̃ )

− r

∫ τ̃+δ

τ̃
e−r(τ−τ̃)u(xθτ )dτ −

(

r

r + λ
eλδ +

λ

r + λ
e−rδ

)

ẋθτ̃+δ(UH − UL)− λ
(eλδ − e−rδ)

r + λ
ẋθτ̃+δ(UH − UL)

=
(

ẋθτ̃ − eλδẋθτ̃+δ

)

(UH − UL) +
(eλδ − e−rδ)

r + λ
u′(xθτ̃+δ)ẋ

θ
τ̃+δ − e−rδu(xθτ̃+δ) + u(xθτ̃ )

− r

∫ τ̃+δ

τ̃
e−r(τ−τ̃)u(xθτ )dτ

Noting that
∂

∂δ
eλδẋθτ̃+δ = λeλδẋθτ̃+δ + eλδẍθτ̃+δ = λeλδ ẋθτ̃+δ − λeλδẋθτ̃+δ = 0

we conclude that

G′(τ̃ ) =
(eλδ − e−rδ)

r + λ
u′(xθτ̃+δ)ẋ

θ
τ̃+δ − e−rδu(xθτ̃+δ) + u(xθτ̃ )− r

∫ τ̃+δ

τ̃
e−r(τ−τ̃)u(xθτ )dτ (D.15)

Using integration by parts we find that

−r

∫ τ̃+δ

τ̃
e−r(τ−τ̃)u(xθτ )dτ = e−rδu(xθτ̃+δ)− u(xθτ̃ )−

∫ τ̃+δ

τ̃
e−r(τ−τ̃)u′(xθτ )ẋ

θ
τdτ

Replacing in equation (D.15) we arrive to

G′(τ̃) =
(eλδ − e−rδ)

r + λ
u′(xθτ̃+δ)ẋ

θ
τ̃+δ − e−rδu(xθτ̃+δ) + u(xθτ̃ ) + e−rδu(xθτ̃+δ)− u(xθτ̃ )−

∫ τ̃+δ

τ̃
e−r(τ−τ̃)u′(xθτ )ẋ

θ
τdτ

=
(eλδ − e−rδ)

r + λ
u′(xθτ̃+δ)ẋ

θ
τ̃+δ −

∫ τ̃+δ

τ̃
e−r(τ−τ̃)u′(xθτ )ẋ

θ
τdτ (D.16)

Replacing ẋθτ = λ(ā− θ)e−λτ in equation (D.16) we get

G′(τ̃ ) = λ(ā− θ)e−λτ̃

[

(1− e−(r+λ)δ)

r + λ
u′(xθτ̃+δ)−

∫ τ̃+δ

τ̃
e−(r+λ)(τ−τ̃ )u′(xθτ )dτ

]

(D.17)
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On the one hand, if θ = 0, then we have that u′(xθτ̃+δ) > u′(xθτ ) for all τ̃ + δ > τ , which means that

G′(τ̃) = λ(ā− θ)e−λτ̃

[

(1− e−(r+λ)δ)

r + λ
u′(xθτ̃+δ)−

∫ τ̃+δ

τ̃
e−(r+λ)(τ−τ̃ )u′(xθτ )dτ

]

> λ(ā− θ)e−λτ̃

[

(1− e−(r+λ)δ)

r + λ
u′(xθτ̃+δ)− u′(xθτ̃+δ)

∫ τ̃+δ

τ̃
e−(r+λ)(τ−τ̃ )dτ

]

= λ(ā− θ)e−λτ̃

[

(1− e−(r+λ)δ)

r + λ
u′(xθτ̃+δ)− u′(xθτ̃+δ)

∫ τ̃+δ

τ̃
e−(r+λ)(τ−τ̃ )dτ

]

= 0.

On the other hand, if θ = 1, then we have that u′(xθτ̃+δ) < u′(xθτ ) for all τ̃ + δ > τ , which means

that

G′(τ̃) = λ(ā− θ)e−λτ̃

[

(1− e−(r+λ)δ)

r + λ
u′(xθτ̃+δ)−

∫ τ̃+δ

τ̃
e−(r+λ)(τ−τ̃ )u′(xθτ )dτ

]

= λ(θ − ā)e−λτ̃

[

−
(1− e−(r+λ)δ)

r + λ
u′(xθτ̃+δ) +

∫ τ̃+δ

τ̃
e−(r+λ)(τ−τ̃ )u′(xθτ )dτ

]

> λ(θ − ā)e−λτ̃

[

−
(1− e−(r+λ)δ)

r + λ
u′(xθτ̃+δ) + u′(xθτ̃+δ)

∫ τ̃+δ

τ̃
e−(r+λ)(τ−τ̃ )diτ

]

= 0.

This means that, for any δ ≥ 0, we have ∂
∂τ̃ U(τ̃ , δ) = 0 implies ∂2

∂τ̃2
U(τ̃ , δ) > 0 which means that

the optimal monitoring policy can not have an interior τ̃ , that is τ̃∗ ∈ {0,∞}.
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E Model with Exogenous News

In this appendix, we consider the model with exogenous news. Thus far, we have ignored alter-

native sources of information, besides monitoring. In this section, we explore the effect of having

exogenous news on the optimal monitoring policy. We show that exogenous news, not only crowd-

out monitoring but by altering the severity of the moral hazard issue across states, may modify the

monitoring policy in a significant way.

Exogenous news such as media articles, customer reviews, and academic research provide infor-

mation to the market that may complement or substitute the principal’s own monitoring efforts. To

provide some insights about the interaction between monitoring and news, we consider the presence

of an exogenous news process that may reveal current quality to the market. More specifically, we

consider the case in which the quality of the product is revealed to the market at a Poisson arrival

rate.

Assume there are two Poisson processes (NL
t )t≥0 and (NH

t )t≥0. The process NL
t is a bad news

process with mean arrival rate θt = µL1{θt=L}, and N
H
t is a good news process with mean arrival

rate µH1{θt=H}. When µL 6= µH we say that news are asymmetric, in which case, the absence of

news is informative about the firm quality. On the other hand, if µL = µH the lack of news arrival

is uninformative. We say that we are in the bad news case when µL > µH and in the good news

case if µH > µL. In the absence of exogenous news and monitoring, beliefs evolve according to

ẋt = λ(at − xt)− (µH − µL)xt(1− xt).

The second term cancels if µH = µL and the dynamics of beliefs (in the absence of any moni-

toring by the principal and arrival of exogenous news) is the same as in the case without news. On

the other hand, if µL 6= µH , the exogenous news introduces a new term in the drift of reputation.

That term is positive in the bad news case and negative in the good news case. The market learns

from the absence of news since no news is informative when the news processes have asymmetric

arrival rates.

Let’s first consider the case with symmetric news arrival, i.e. µL = µH = µ. From the firm’s

point of view, it does not matter if the state is learned due to monitoring or exogenous news. The

only difference is that now, there is an extra arrival rate that reveals the state. If we denote the

date at which quality is revealed, either by monitoring or exogenous news, by T̃n, then we can still

write the incentive compatibility constraint as

E
[

e−(r+λ)(T̃n−t)
∣

∣Ft

]

≥ q.

This means that we can still use qτ as our main state variable, and the dynamics of qτ are given by

dqτ = (r + λ)qτdτ − (1− qτ )(dM
c
τ + µdt). (E.1)

Notice that the only difference between equations (D.1) and (E.1) is that the monitoring rate dM c
τ
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is incremented by µdτ due to the exogenous news. Similarly, because the problem of the principal

is the same going forward no matter if quality was learned due to monitoring or exogenous news, we

can still write the problem recursively based on the time elapsed since the last time the firm type

was observed (either by monitoring or news) and the type observed at that time. The principal’s

continuation value now evolves according to

dUτ =
(

rUτ − u(xθτ )
)

dτ +
(

Uτ −M(U, xθτ )
)

dM c
τ + µ

(

Uτ − xθτUH − (1− xθτ )UL

)

dτ. (E.2)

Hence, the Principal’s problem has the same structure as before, with the exception that now

the principal gets some monitoring with intensity µ for free. When news arrivals are symmetric,

exogenous news is a perfect substitute for monitoring. Lemmas 8 and 4.4 still apply, and the

monitoring rate is positive only if the incentive compatibility constraint is binding, in which case

dqτ = 0 so the monitoring rate is

m∗ + µ = (r + λ)
q

1− q
.

Clearly, the monitoring rate to keep the incentive constraint binding needs to be positive only if

µ is low enough. Otherwise, exogenous news suffices for incentive purposes. In this latter case,

exogenous news are enough to discipline the firm, and the only purpose of monitoring is to learn

the sate. Depending on the magnitude of µ, the optimal monitoring policy may entail some or no

random monitoring. We have the following proposition, which is a direct implication of Proposition

1.

Proposition E.1. Suppose that µL = µH . If (r+λ)
q

1−q ≥ µ then the optimal monitoring policy is

the one characterized in Propositions 3 and 1 with a Poisson monitoring rate.

m∗ = (r + λ)
q

1− q
− µ.

On the other hand, if (r + λ)
q

1−q < µ, then the optimal monitoring policy is deterministic.

Proof. Letting M̃ c
τ =M c

τ + µτ and ũ(x) = u(x) + µc, we can write

dqτ = (r + λ)qτdτ − (1− qτ )dM̃
c
τ

dUτ =
(

rUτ − ũ(xθτ )
)

dτ +
(

Uτ −M(U, xθτ )
)

dM̃ c
τ ,

so the optimal control problem follows the same structure as before with two diferences: (1) now

dM̃ c
τ must be greater or equal than µdτ , and (2) qτ is bounded below by µ

r+λ+µ . If (r+ λ)
q

1−q ≥ µ

then (1) and (2) are not binding. On the other hand, if (r + λ)
q

1−q < µ then qτ > q. Hence, the

incentive compatibility constraint is slack at all times, so the solution to the Principal problem

corresponds to the one in Section A, which means that monitoring is deterministic.
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E.1 Asymmetric News Intensity

The qualitative results are different if µH 6= µL. In this case, the presence of news changes the

dynamics of incentives: the monitoring rate changes over time and is dependent on the outcome

of the outcome in the last review. We do not solve the full problem here and instead focus on the

case in which the principal’s preferences are linear. Based on our previous analysis of the linear,

it is natural to conjecture that the optimal policy has (1) no atoms and that (2) the monitoring

rate is positive only if the incentive compatibility constraint is binding. We can use the maximum

principle to verify if our conjectured policy is optimal. We relegate a detailed discussion of the

solution to the appendix.

We focus on the simplest case with parameters such that the optimal policy has mτ > 0 for

all τ ≥ 0; this case illustrates the effect of introducing exogenous news on the optimal monitoring

policy at the lowest cost of technical complications.3

E.2 Incentive Compatibility and the Principal’s Problem with News

In the presence of exogenous news, we cannot use a single state variable to characterize incentive

compatibility. With persistent state variables, we need additional state variables to keep track of

the continuation value across states. As in Fernandes and Phelan (2000) we use the continuation

value conditional on the firm’s private information (i.e., the firm quality).

Let Πθ
τ be the firm’s continuation value conditional on being type θτ and define Dτ ≡ ΠH

τ −ΠL
τ .

The continuation value must satisfy the Bellman equations

rΠH
τ = max

a∈[0,ā]

{

xτ − kaτ − λ(1− aτ )Dτ− + (µH +mτ )(Π(H) −ΠH
τ ) + Π̇H

τ

}

rΠL
τ = max

a∈[0,ā]

{

xτ − kaτ + λaτDτ− + (µL +mτ )(Π(L)−ΠL
τ ) + Π̇L

τ

}

,

where we use the fact that if at = ā for any t ≥ Tn then, given θTn
= θ, the continuation payoff is

Πθ
0 = Π(θ) (recall that Π(θ) is given by (1)). From here it follows that full effort aτ = ā is incentive

compatible if and only if:4

Dτ ≥
k

λ
.

The evolution of Dτ can be derived (analogously to what we have done before) to be

Ḋτ = (r + λ+mτ )Dτ − µH(Π(H) −ΠH
τ ) + µL(Π(L) −ΠL

τ )−mτ∆.

with a boundary condition Dτ̄ = ∆ ≡ Π(H)−Π(L) = 1/(r + λ).

3Such policy is optimal when the rates of exogenous news arrivals are low. When those rates are large, after some
histories the principal will not monitor at all since the exogenous news would be sufficient to provide incentives, as in
Board and Meyer-ter-Vehn (2013). That is, our analysis focuses on the cases where news are not informative enough,
and so some amount of monitoring is needed at all times to solve the agency problem.

4This incentive compatibility is analogous to that in Board and Meyer-ter-Vehn (2013) except that there the only
source of information is the exogenous news process and we allow for additional information from costly inspections.
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From the principal’s viewpoint, it does not matter whether he learns the state due to monitoring

or exogenous news. In either case, the problem facing the principal is the same going forward.

Hence, we can write the problem recursively using as state variables both the time elapsed since

the last time the firm type was observed (either by monitoring or news), and the type observed at

that time. The optimal control problem (ignoring jumps in the monitoring distribution) becomes

G
θ(U) = sup

τ̄ ,mτ ,Π¬θ
0

∫ τ̄

0
e−rτ−M

τ−

(

xθτ + µHx
θ
τUH + µL(1− xθτ )UL +mτM(U, xτ )

)

dτ

+ e−rτ̄−Mτ̄M(U, xτ̄ )

subject to

Π̇H
τ = (r + µH +mτ )Π

H
τ − xτ + kā+ λ(1− ā)(ΠH

τ −ΠL
τ )− (µH +mτ )Π(H), ΠH

τ̄ = Π(H)

Π̇L
τ = (r + µL +mτ )Π

L
τ − xτ + kā− λā(ΠH

τ −ΠL
τ )− (µL +mτ )Π(L), Π

L
τ̄ = Π(L)

Πθ
0 = Π(θ)

k

λ
≤ ΠH

τ −ΠL
τ , ∀τ ∈ [0, τ̄ ]

0 ≤ mτ .

Note that in the previous formulation, the continuation payoff given the counterfactual type

¬θ (if θ = H then ¬θ = L and vice versa), which we denote by Π¬θ
0 , is not given by Π(¬θ). The

solution to this problem critically depends on the intensity of bad versus good news arrivals. We

first consider the symmetric case.

We consider the asymmetric case, µH 6= µL, so that the intensity of news arrival depends on

the firm’s quality. Such asymmetry seems natural: in some industries and under some market

conditions, good news tend to be revealed faster than bad news, among other things, because firms

themselves may delay the release of bad news. Sometimes, bad news tend to be revealed faster

than good news, perhaps because news agencies and TV broadcasts face stronger demand for bad

news stories.

The main question we address here is how monitoring rates are affected by reputation when

exogenous news are asymmetric. We do not solve the full problem here, and instead we focus on the

case in which the principal’s preferences are linear. Based on our previous analysis, it is natural to

conjecture that the optimal policy has 1) no atoms in the distribution of monitoring (in particular,

τ̄ = ∞), and 2) the monitoring rate is positive (i.e., mτ > 0) only if the incentive compatibility

constraint is binding, that is if ΠH
τ −ΠL

τ = k/λ. We can use the maximum principle to verify if our

conjectured policy is optimal. We relegate a detailed discussion of the optimality conditions to the

appendix.

Given this monitoring policy, we can follow the same steps as before, and derive the monitoring

rate using the incentive compatibility constraint: (Π̇H
τ − Π̇L

τ ) = 0 and ΠH
τ − ΠL

τ = k/λ. These

conditions are necessary for the incentive compatibility constraints to bind at all times. They
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imply:

mτ = α+ βΠL
τ , (E.3)

where

α =
(r + λ)k/λ+ µH(k/λ −Π(H)) + µLΠ(L)

∆− k/λ

β =
µH − µL
∆− k/λ

.

The constant β is positive in the good news case and negative otherwise so in the bad news case

the monitoring rate is positive only if ΠL
τ ≤ −α/β, and in the good news case, the monitoring rate

is positive only if ΠL
τ ≥ −α/β. That is, with bad news, monitoring is needed only if the firm’s

continuation value is low, and with good news, monitoring is needed only if the firm’s continuation

value is high. The logic for these conditions follows the results in Board and Meyer-ter-Vehn (2013):

With bad news, the incentives for effort increase in reputation, while with good news the incentives

for effort decrease in reputation.

We focus on the simplest case with parameters such that the optimal policy has mτ > 0 for

all τ ≥ 0; this case illustrates the effect of introducing exogenous news on the optimal monitoring

policy at the lowest cost of technical complications.5 Using the relation ΠH
τ = ΠL

τ +Dτ = ΠL
τ +k/λ

and the monitoring rate (E.3) we write the evolution of the low quality firm continuation value as

Π̇L
τ = −(µL + α)Π(L) + (r + µL + α− βΠ(L))ΠL

τ + β(ΠL
τ )

2 − xτ . (E.4)

If θ0 = L then the initial condition is ΠL
0 = Π(L). If θ0 = H (and the incentive compatibility is

binding) the initial condition is ΠL
0 = Π(H) − k/λ.6 We can analyze the evolution of monitoring

by studying the phase diagram in the space (xτ ,Π
L
τ ) in Figure 2.

Using the ODE for ΠL
τ in equation (E.4) we get a quadratic equation for the steady state:

0 = −(µL + α)Π(L) + (r + µL + α− βΠ(L))ΠL + β(ΠL)2 − x. (E.5)

This quadratic equation has two solutions. We show that in the good news case only the largest

solution is consistent with a positive monitoring rate, while in the bad news only the smallest one

is consistent with a positive monitoring rate. So if the solution has positive monitoring rate at all

times, then the solution must correspond to the saddle point trajectory in the phase diagram in

Figure 2.

5Such policy is optimal when the rates of exogenous news arrivals are low. When those rates are large, after some
histories the principal will not monitor at all since the exogenous news would be sufficient to provide incentives, as in
Board and Meyer-ter-Vehn (2013). That is, our analysis focuses on the cases where news are not informative enough,
and so some amount of monitoring is needed at all times to solve the agency problem.

6If the IC constraint is not binding at time zero then the initial value must be computed indirectly.
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Π(L) Π(H)− k/λ
0

xss

1 (xH0 ,Π
L
0 )

(xL0 ,Π
L
0 )

Π̇L = 0

ẋ = 0

ΠL

x

(a) Case with bad news

Π(L) Π(H)− k/λ
0

xss

1 (xH0 ,Π
L
0 )

(xL0 ,Π
L
0 )

Π̇L = 0

ẋ = 0

ΠL

x

(b) Case with good news

Figure 2: Phase diagram. The (xτ ,Π
L
τ ) system has two steady states. In each case, one of the

steady states is a saddle point. If the optimal solution is such that mτ > 0 all τ ≥ 0, then the
optimal solution corresponds to the trajectory converging to the saddle point. In this case, the
analysis of the phase diagram reveals that the trajectory of ΠL

τ must be monotone between news
arrivals. This immediately implies that the evolution of monitoring between news is monotone as
well.

From inspection of the phase diagram, it is clear that ΠL
τ is monotone: it starts decreasing after

good news and starts increasing after bad news. This implies the dynamics of optimal monitoring

that are described in Figure 3. In the bad news case, monitoring increases after (bad) news.

The opposite is optimal in the good news case. As previously mentioned, this is driven by the

dynamics of reputational incentives. In the bad news case, incentives weaken as reputation goes

down. As Board and Meyer-ter-Vehn (2013) point out, a high reputation firm has more to lose from

a collapse in its reputation following a breakdown than a low reputation firm. Hence, inspections

are most needed for incentive purposes when reputation is low. In the good news case, incentives

decrease in reputation; a low reputation firm has more to gain from a breakthrough that boosts

its reputation than a high reputation firm. In the good news case, inspections are thus most

needed when reputation is high. Accordingly, monitoring complements exogenous news, being used

when exogenous news are ineffective at providing incentives. We still need to verify that: (1) the

optimal monitoring policy is optimal, and (2) show that the dynamics of the firm’s continuation

value satisfy the monotonicity properties in Figure 2. We consider the optimality conditions for

the optimal policy in Section E.3 and study the steady states of the firm’s continuation payoffs in

Section E.4.
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E.3 Necessary Conditions with Asymmetric News

The Hamiltonian for the optimal control problem is

H(ΠL
τ ,Π

H
τ , ζτ , ν

L
τ , ν

H
τ , ψτ ,mτ , τ) = ζτ ((r +mτ )U

θ
τ − xθτ − µHx

θ
tUH − µL(1− xθτ )UL −mτM(U, xτ )

+ ψτ (Π
H
τ −ΠL

τ − k/λ) + νHτ
(

(r + µH +mτ )Π
H
τ − xτ + kā+ λ(1− ā)(ΠH

τ −ΠL
τ )

− (µH +mτ )Π(H)
)

+ νLτ
(

(r + µL +mτ )Π
L
τ − xτ + kā− λā(ΠH

τ −ΠL
τ )

− (µL +mτ )Π(L)
)

As before, we have that ζτ− = 1 and the evolution of the remaining co-state variables is The

evolution of the co-state variables is given by

ν̇Hτ = −(µH + λ(1− ā))νHτ − ψτ + λāνLτ

ν̇Lτ = −(µL + λā)νLτ + ψτ + λ(1− ā)νHτ .

The switching function S(τ) is given by

S(τ) = M(U, xτ ) + νHτ (ΠH
τ −Π(H)) + νLτ (Π

L
τ −Π(L))− U θ

τ .

We pin-down the boundary condition for the co-state variables νθτ by looking at the switching

function. The rate of monitoring is positive (and finite) at time zero only if S(0) = 0 which implies

that

0 = M(U, θ)− Uθ + νH0 (ΠH
0 −Π(H)) + νL0 (Π

L
0 −Π(L)).

If the incentive compatibility constraint is binding at time zero, so ΠH
0 − ΠL

0 = k/λ, then when

θ0 = L and m0 > 0 the initial value of the co-state variable νH0 is

c = −νH0

(

1

r + λ
−
k

λ

)

.

The initial value of the co-state variable νL0 is determined by the transversality condition limτ→∞ νLτ =

νLss. If the incentive compatibility constraint at time zero were slack (that ism0 = 0) then the initial

value would be νH0 = 0. The determination of νL0 is more complicated in this latter case as νLτ can

jump at the junction time τm in which the IC constraint becomes binding. Similarly, if θ = H then

we have that νL0 is given by

c = νL0

(

1

r + λ
−
k

λ

)

while νH0 is determined by the transversality condition limτ→∞ νHτ = νHss. As for θ0 = L, the same

qualification for the case in which the IC constraint is slack at time zero applies. In the same way

as we did in the case without news, we can use the condition that the switching function is constant
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on a singular arc, Ṡτ = 0, to back out the value of the Lagrange multiplier ψτ

ψτ

(

(ΠH
τ −ΠL

τ )− (Π(H)−Π(L))) = ẋθτ (UH − UL)− U̇ θ
τ + (−(µH + λ(1− ā))νHτ + λāνLτ )(Π

H
τ −Π(H)) + νHτ Π̇H

τ

+ (−(µL + λā)νLτ + λ(1− ā)νHτ )(ΠL
τ −Π(L)) + νLτ Π̇

L
τ

If the incentive compatibility constraint is binding, ΠH
τ −ΠL

τ = k/λ, then we can write the Lagrange

multiplier as

ψτ =
1

k/λ−∆

[

ẋθτ (UH − UL)− U̇τ −
(

µHν
H
τ + µLν

L
τ

)

(ΠL
τ −Π(L))

+ +
(

(µH + λ(1− ā))νHτ − λāνLτ
)

(

1

r + λ
−
k

λ

)

(νLτ + νHτ )Π̇L
τ

]

.

A necessary condition for our conjectured monitoring policy mτ to be optimal is that the

Lagrange multiplier ψτ is non-negative whenever the incentive compatibility constraint is binding.

The monitoring policy mτ is positive if and only if this constraint is binding; hence, the condition

reduces to verify that ψτmτ ≥ 0. Given the higher dimensionality of the state space, we can no

longer check this condition analytically. However, this condition can be easily verified numerically

after solving for the system of ODEs. The Hamiltonian in our problem is not concave, so traditional

theorems on the sufficiency of the maximum principle do not apply. However, our problem is a

special case of the generalized linear control processes considered by Lansdowne (1970), for which

he proves the sufficiency of the maximum principle. The results in Lansdowne (1970) do not

apply directly to our problem due to the presence of a state constraint; however, because the state

constraint in our problem is linear, his sufficiency result can be extended to our setting.

The dynamics of optimal monitoring are described in Figure 3. In the bad news case, monitoring

increases after (bad) news. The opposite is optimal in the good news case. The dynamics of

monitoring are driven by the dynamics of reputational incentives. In the bad news case, incentives

weaken as reputation goes down. As Board and Meyer-ter-Vehn (2013) point out, a high reputation

firm has more to lose from a collapse in its reputation following a breakdown than a low reputation

firm. Hence, inspections are most needed for incentive purposes when reputation is low. In the

good news case, incentives decrease in reputation; a low reputation firm has more to gain from

a breakthrough that boosts its reputation than a high reputation firm. In the good news case,

inspections are thus most needed when reputation is high. Accordingly, monitoring complements

exogenous news, being used when exogenous news are ineffective at providing incentives.

E.4 Monotonicity of Monitoring Policy with Asymmetric News

Proof. Looking at the phase diagram in Figure 2, we see that if the optimal solution is given by

the saddle path, then the trajectory towards the steady state is monotonic, which implies that mτ

is decreasing in xτ . Hence, we only need to rule out that in the optimal policy the continuation
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Figure 3: Response of monitoring rates to exogenous news in the bad news and good new cases. In
both pictures the starting belief is x0 = 1. The blue curves represent optimal monitoring intensity,
mτ and the red curves the evolution of reputation, xτ . In the bad news case (left panel) the rate
of monitoring increases after negative news (either from inspection or exogenous news). Moreover,
optimal monitoring intensity is decreasing in beliefs. The dynamics of monitoring are the opposite
in the good news case. Parameters: r = 0.1, k = 0.5, c = 0.1, ā = 0.5, λ = 1. In the bad news case
we take µH = 0, and µL = 0.2, and in the good news case we take µH = 0.2, and µL = 0

values converge to the stable steady state. We show this by verifying that the trajectory to the

stable steady state violates the non-negativity condition of the monitoring rate.

The roots of the equation for the steady state are

−(r + µL + α− βΠ(L))±
√

(r + µL + α− βΠ(L))2 + 4((µL + α)Π(L) + xss)β

2β
.

Let’s denote by ΠL
− and ΠL

+ the smaller and larger solution to the quadratic equation (E.5), respec-

tively. We show next that only one of these roots is consistent with mτ ≥ 0.

Claim E.2 (Bad News). If µL > µH then

α+ βΠL
+ < 0.

Given that we are in the bad news case, mτ > 0 only if Πτ < −α/β. When µL > µH , the larger

35



root ΠL
+ is

ΠL
+ =

r + µL + α− βΠ(L) +
√

(r + µL + α− βΠ(L))2 − 4((µL + α)Π(L) + xss)(−β)

−2β

>
2(r + µL + α− βΠ(L)) + 2

√

((µL + α)Π(L) + xss)(−β)

−2β

= −
α

β
+
r + µL − βΠ(L)

−β
+

√

((µL + α)Π(L) + xss)(−β)

−β

> −
α

β
.

Hence, in the bad news case only the trajectory towards the saddle point is consistent with mτ > 0.

Claim E.3 (Good News). If µL < µH then

α+ βΠL
− < 0.

In the good news case, mτ > 0 only if Πτ > −α/β. The smaller root is

ΠL
− =

−(r + µL + α− βΠ(L))−
√

(r + µL + α− βΠ(L))2 + 4((µL + α)Π(L) + xss)β

2β

If ΠL
− ≤ 0 then there is nothing to prove as the payoff of the firm cannot be negative. Accordingly,

let’s restrict attention to parameters such that ΠL
− > 0. We have that ΠL

− > 0 if and only if

(r + µL − βΠ(L)) +
√

(r + µL + α− βΠ(L))2 + 4((µL + α)Π(L) + xss)β < −α

Monitoring is positive at iff ΠL
− > −α/β which requires

(r + µL − α+ βΠ(L)) +
√

(r + µL + α− βΠ(L))2 + 4((µL + α)Π(L) + xss)β < 0

We consider two separate cases:

Case α ≤ 0 Using the condition for ΠL
− > 0 we get the inequality

r + µL − α+ βΠ(L) +
√

(r + µL + α− βΠ(L))2 + 4((µL + α)Π(L) + xss)β >

2(r + µL + βΠ(L)) − α+ 2
√

(r + µL + α− βΠ(L))2 + 4((µL + α)Π(L) + xss)β > 0

which contradicts the condition for positive monitoring ΠL
− > −α/β.

Case α > 0 If (r + µL + α − βΠ(L)) > 0 then we get an immediate contradiction with the

hypothesis that ΠL
− > 0. Hence, assume that (r + µL + α− βΠ(L)) < 0. For any b > 0 and a < 0
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we have the following inequality

√

a2 + b > |a| ⇒ −a−
√

a2 + b < −a− |a| = 0.

If α > 0 then we have 4((µL + α)Π(L) + xss)β > 0. Setting a = (r + µL + α − βΠ(L)) < 0 and

b = 4((µL + α)Π(L) + xss)β > 0 in the previous inequality we get

ΠL
− =

−(r + µL + α− βΠ(L))−
√

(r + µL + α− βΠ(L))2 + 4((µL + α)Π(L) + xss)β

2β
< 0,

which yields a contradiction to ΠL
− > 0.
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F Discrete Time Model

In this appendix we consider a discrete version of the model. We show that the solution in the

discrete time version has a similar form to the one in the continuous time model and converges

to the continuous time policy when the time between periods goes to zero. Remember that the

original continuous time problem is























supF
∫∞
0

(∫ τ
0 e

−rsu(xθs)ds+ e−rτM(U, xθτ )
)

dF (τ)

subject to

∫∞
τ

(

e−(r+λ)(s−τ) − q
)

dF (s) ≥ 0.

Suppose that the the principal can only monitor at (real) time τ ∈ {0,∆, 2∆, . . . }. Let δ = e−r∆

and β = e−λ∆. That is, δ is the one period discount factor and β is the one period transition

probability. With some abuse of notation, let’s define the utility function in period t to be

u(xt) =

∫ ∆

0
e−rsũ

(

xte
−λs + ā

(

1− e−λs
))

ds,

where ũ is the flow payoff in the original continuous time version of the model. Notice that we have

that

xt+1 = (1− β)ā+ βxt.

Let’s denote the realized payoff of monitoring in period t by

Vt =

t
∑

n=0

δnu(xn) + δtM(U, xt),

and notice that Vt = V (t∆) where

V (τ) =

∫ τ

0
e−rsũ(xθs)ds+ e−rτM(U, xθτ )

We can now write the discrete time version of the problem as



































maxpt
∑∞

0 Vtpt

subject to

∑

k≥0

(

(βδ)k − q
)

pt+k ≥ 0, ∀t ≥ 0
∑

t≥0 pt = 1
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Let (βδ)tψt be the Langrange multiplier of the constraint at time t. The Langrangian is

L =
∞
∑

t=0

Vtpt +
∞
∑

t=0

ψt

∑

k≥0

(

(βδ)t+k − (βδ)tq
)

pt+k

We can get replace p0 = 1−
∑

t≥1 pt and write the primal optimization problem as















































maxpt
∑∞

t=1(Vt − V0)pt

subject to

(1− q) +
∑∞

t=1

(

(βδ)t − 1
)

pt ≥ 0
∑∞

k=0

(

(βδ)t+k − (βδ)tq
)

pt+k ≥ 0, ∀t ≥ 1
∑∞

t=1 pt ≤ 1

(F.1)

The Lagrangean for this problem is

L(p, η, ψ) = (1− q)ψ0 + η +

T
∑

t=1

(

Vt − V0 − η +
(

(βδ)t − 1
)

ψ0 +

t
∑

k=1

ψk

(

(βδ)t − (βδ)kq
)

)

pt

From here, we get that for all t ≥ 1 it must be the case that

Vt − V0 − η +
(

(βδ)t − 1
)

ψ0 +
t
∑

k=1

ψk

(

(βδ)t − (βδ)kq
)

≤ 0,

which means that the dual of the optimization problem in (F.1) is



































min (1− q)ψ0 + η

subject to

Vt − V0 − η +
(

(βδ)t − 1
)

ψ0 +
∑t

k=1 ψk

(

(βδ)t − (βδ)kq
)

≤ 0, ∀t ≥ 1

η ≥ 0, ψt ≥ 0 ∀t ≥ 0

(F.2)

We start with the following Lemma characterizing policies that keep the incentive compatibility

constraint binding.

Lemma F.1. Let {pt
∗

t }t≥0 be given by

pt
∗

t =



















0 if t ≤ t∗ − 1

pt∗ if t = t∗
(

1−q

1−βδq

)t−t∗−1
pt

∗

t∗+1 if t ≥ t∗ + 1,
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pt
∗

t∗ =
q(1− (βδ)t

∗+1)

(βδ)t∗ − q(βδ)t∗+1

pt
∗

t∗+1 =
q(1− βδ)

1− βδq

(βδ)t
∗
− q

(βδ)t
∗
− q(βδ)t

∗+1
,

then the incentive compatibility constraint is binding at t = 0 and t ≥ t∗+1 and slack for 0 < t ≤ t∗.

Alternatively, let {p0t}t≥0 be given by

p0t =
q(1− βδ)

1− βδq

(

1− q

1− βδq

)t

,

then the incentive compatibility constraint is binding at all t ≥ 0.

Proof. If the incentive compatibility constraint is binding for t ≥ t∗ + 1 then it must be the case

that
∑

k≥0

(

(βδ)t+k − (βδ)tq
)

pt+k = 0 for all t ≥ t∗+1. Suppose that pt = αt−t∗−1pt∗+1. Replacing

in the incentive compatibility constraint at time t∗ + 1 we get

∑

k≥0

(

(βδ)k − q
)

αk = 0

which means that
1

1− βδα
=

q

1− α
,

and solving for α we get

α =
1− q

1− βδq
.

Next, we determine pt∗ and pt∗+1. The incentive compatibility at time zero requires that

(1− q) +

∞
∑

t=1

(

(βδ)t − 1
)

pt = (1− q) +

∞
∑

t=t∗

(

(βδ)t − 1
)

pt

=

∞
∑

t=t∗

(βδ)tpt − q

= (βδ)t
∗

pt∗ +

∞
∑

t=t∗+1

(βδ)tpt − q

= (βδ)t
∗

− q +

∞
∑

t=t∗+1

((βδ)t − (βδ)t
∗

)pt

= 0
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where we have used the fact that pt∗ = 1−
∑∞

t=t∗+1 pt. We have that

∞
∑

t=t∗+1

pt = pt∗+1

∞
∑

k=0

(

1− q

1− βδq

)k

= pt∗+1

1− βδq

q(1− βδ)

∞
∑

t=t∗+1

(βδ)tpt = pt∗+1(βδ)
t∗+1

∞
∑

t=t∗+1

(

βδ(1 − q)

1− βδq

)k

= pt∗+1(βδ)
t∗+1 1− βδq

1− βδ

Moreover, we have that

Replacing in the IC constraint we get

pt∗+1 =
q(1− βδ)

1− βδq

(βδ)t
∗
− q

(βδ)t∗ − q(βδ)t∗+1

We have the following Proposition characterizing the optimal policy

Theorem F.2. Let t̄ = max{t ≥ 0 : (βδ)t ≥ q}. If Vt has a maximum at t ≤ t̄ then the optimal

policy is deterministic monitoring at the maximum. Otherwise, the optimal policy is the following:

1. The optimal policy is p0t if

V1 − V0 ≤
(1− βδ)

βδ(1 − q)

∞
∑

t=1

(

p0t
1− p00

Vt − V1

)

,

in which case the incentive compatibility constraint is binding at all times.

2. The optimal policy is p1t if

V1 − V0 ≥
1− βδ

βδ(1 − βδq)

(

∞
∑

n=1

p11+n

1− p1
V1+n − V1

)

V2 − V1 ≤
1− βδ

1− βδq

∞
∑

n=1

(

p11+n

1− p1
V1+n − V1

)

,
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3. The optimal policy is pt
∗

t , 1 < t∗ ≤ t̄ if

Vt∗ − V0 ≥
1− (βδ)t

∗

(βδ)t∗ (1− βδq)

(

∞
∑

n=1

pt
∗

t∗+n

1− pt
∗

t∗
Vt∗+n − Vt∗

)

Vt∗ − Vt∗−1 ≥
1− βδ

1− βδq

∞
∑

n=1

(

pt
∗

t∗−1+n

1− pt
∗

t∗−1

Vt∗−1+n − Vt∗

)

Vt∗+1 − Vt∗ ≤
1− βδ

1− βδq

∞
∑

n=1

(

pt
∗

t∗+n

1− pt
∗

t∗
Vt∗+n − Vt∗

)

,

4. The optimal policy is

pt =































0 if t < t̄
q−(βδ)t̄+1

(βδ)t̄(1−βδ)
if t = t̄

(βδ)t̄−q

(βδ)t̄(1−βδ)
if t = t̄+ 1

0 if t > t̄+ 1,

if for all t ≤ t̄

Vt+1 − Vt >
1− βδ

1− βδq

∞
∑

n=1

(

ptt+n

1− ptt
Vt+n − Vt

)

Proposition F.3. In the limit, when ∆ → 0, the optimal policy converges to the one in the

continuous time model.

Proof. First, take the limit of the policy in Lemma F.1. First, we consider the case with t∗ ≥ 1.

Let τ = t∆ and replace the expressions for δ and β. First, we get that

p
τ∗/∆
τ∗/∆ =

q(1− e−(r+λ)(τ∗+∆))

e−(r+λ)τ∗ − qe−(r+λ)(τ∗+∆)

p
τ∗/∆
τ∗/∆+1 =

q(1− e−(r+λ)∆)

1− e−(r+λ)∆q

e−(r+λ)τ∗ − q

e−(r+λ)τ∗ − qe−(r+λ)(τ∗+∆)
,

so taking the limit when ∆ → 0 we get

lim
∆→0

p
τ∗/∆
τ∗/∆ =

q(e(r+λ)τ∗ − 1)

1− q

lim
∆→0

p
τ∗/∆
τ∗/∆+1 = 0.

Second, we get that for τ ≥ τ∗

p
τ∗/∆
τ/∆

=

(

1− e−(r+λ)∆q

1− q

)−(τ−τ∗)/∆
1− e−(r+λ)∆q

1− q
p
τ∗/∆
τ∗/∆+1
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Notice that

(

1− e−(r+λ)∆q

1− q

)−(τ−τ∗)/∆
1− e−(r+λ)∆q

1− q
pt

∗

t∗+1 =

(

1 +
q

1− q

1− e−(r+λ)∆

∆
∆

)−(τ−τ∗)/∆
q(1− e−(r+λ)∆)

(1− q)∆

1− e(r+λ)τ∗q

1− qe−(r+λ)∆
∆,

so taking the limit we get that for any t ≥ t∗ + 1 with τ = t∆

lim
∆→0

∑

n≥τ/∆

p
τ∗/∆
n/∆ =

1− e(r+λ)τ∗q

1− q

∫ ∞

τ
e−m∗(s−τ∗)m∗dτ =

1− e(r+λ)τ∗q

1− q
e−m∗(τ−τ∗)

which verifies that the policy converges to the on in the continuous time model. Similarly, when

t∗ = 0 the policy is given by

p0τ/∆ =
q(1− e−(r+λ)∆)

1− e−(r+λ)∆q

(

1− e−(r+λ)∆q

1− q

)−τ/∆

so for τ = t∆ we get

lim
∆→0

∑

n≥t

p0n =

∫ ∞

τ
e−m∗(s−τ∗)m∗dτ = e−m∗(τ−τ∗)

Finally, notice that for the final case in Theorem F.2 we have that pt̄+pt̄+1 = 1, τ̄ = ∆t̄→ 1
r+λ log 1

q

so we have monitoring with probability 1 at time τ̄ . Finally, we can verify that the condition

Vτ∗/∆ − Vτ∗/∆−1 ≥
1− βδ

1− βδq

∞
∑

n=1





p
τ∗/∆
τ∗/∆−1+n

1− p
τ∗/∆
τ∗/∆−1

Vτ∗/∆−1+n − Vτ∗/∆





Vτ∗/∆+1 − Vτ∗/∆ ≤
1− βδ

1− βδq

∞
∑

n=1





p
τ∗/∆
τ∗/∆+n

1− p
τ∗/∆
τ∗/∆

Vτ∗/∆+n − Vτ∗/∆



 ,

converges to

V ′(τ∗) =
r + λ

1− q
(E[V (τ)|τ > τ∗]− V (τ∗)) .

Proof Theorem F.2

The case in which Vt reaches a maximum for some t ≤ t̄ is trivial as in this case all the constraints

are slack, so we only need to consider the case in which Vt is increasing for t ≤ t̄. In this case,

the proof relies on the theory of weak duality for infinite-dimensional linear programming problems

(Anderson and Nash, 1987, Theorem 2.1). The policy in Theorem F.2 is feasible for the primal

problem. We conjecture that the optimal policy takes this form, and construct Lagrange multipliers
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that are dual feasible. By weak duality, the value of the dual given these Lagrange multipliers

provides an upper bound on the value of the primal. We then verify that the value of the dual

corresponds to the value of the primal given our conjectured policy, which establishes the optimality

of our conjectured policy.

We start with some Lemmas that will be useful in the computations.

Lemma F.4. If u is convex then u(xt+1)− βu(xt) is increasing.

Proof. Since β > 0, the inequality we are claiming is equivalent to

u (xt) ≤
1

1 + β
u (xt+1) +

β

1 + β
u (xt−1) . (F.3)

Now, using twice the definition of xt, we have:

1

1 + β
xt+1 +

β

1 + β
xt−1 =

βxt + (1− β) a+ βxt−1

1− β
= xt

In other words, xt is a weighted average of xt+1 and xt−1. Note that the weights are the same as

in (F.3) and hence convexity of u implies that (F.3) indeed holds.

Lemma F.5.

M(U, xt)− βM(U, xt−1) = (1− β)M(U, ā)

F.1 Construction of the Lagrange Multipliers

Let t∗ be the the first date at which there is monitoring with positive probability. The objective is

to construct multipliers when the incentive compatibility constraint is binding after t∗ + 1. Let’s

define

Ft ≡ Vt − V0 − η +
(

(βδ)t − 1
)

ψ0 +

t
∑

k=1

ψk

(

(βδ)t − (βδ)kq
)

,

which correspond to the LHS of the constraint at time t in the dual problem. Clearly, the multipliers

(η, ψ) are dual feasible if and only if Ft ≥ 0. Taking the difference Ft+1 − Ft we get

Ft+1 − Ft = Vt+1 − Vt + (1− q)(βδ)t+1ψt+1 −
(

(βδ)t − (βδ)t+1
)

t
∑

k=0

ψk

where

Vt+1 − Vt = δt+1u(xt+1) + δt+1M(U, xt+1)− δtM(U, xt)

If Ft = 0 and ψt+1 > 0, then it must be the case that Ft+1 = 0, so Ft+1 − Ft = 0. This requires

that

(1− q)(βδ)t+1ψt+1 = −(Vt+1 − Vt) +
(

(βδ)t − (βδ)t+1
)

t
∑

k=0

ψk > 0 (F.4)
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We want to derive a difference equation for ψ̃t = βtψt such that Ft = 0 for all t ≥ t∗ + 1. From

equation (F.4) we have that if Ft+1 = 0, then ψt+1 is given by

(1− q)(βδ)t+1ψt+1 = −(Vt+1 − Vt) +
(

(βδ)t − (βδ)t+1
)

t
∑

k=0

ψk (F.5)

Considering equation at time t and multiplying both sides by βδ we get

(1− q)(βδ)t+1ψt = −βδ(Vt − Vt−1) +
(

(βδ)t − (βδ)t+1
)

t−1
∑

k=0

ψk (F.6)

Taking the difference between (F.1) and (F.4), and using the definition ψ̃t = βtψt we get

(1− q)δt+1ψ̃t+1 = βδ(Vt − Vt−1)− (Vt+1 − Vt) +
(

1− qβδ
)

δtψ̃t

Hence, for any t > t∗ + 1, ψ̃t satisfies the recursion

ψ̃t+1 = αψ̃t − ht (F.7)

where

α ≡
1− qβδ

(1− q)δ

ht ≡
1

1− q
(u(xt+1)− βu(xt) + (1− β)M(U, ā)) .

and α > 1, ht is increasing by Lemma F.4. Solving recursively, we get that

ψ̃t∗+k+1 = αkψ̃t∗+1 −

k−1
∑

n=0

αk−1−nht∗+n+1, k ≥ 1. (F.8)

The final step is to specify conditions on the initial value ψt∗+1 that guarantee that the sequence

{ψt}t≥t∗+1 in equation (F.8) is nonnegative.

Lemma F.6. Fix 0 ≤ t∗ ≤ t̄ then

1. If u(xt∗+1)− βu(xt∗) + (1− β)M(U, ā) ≥ 0 then ψt ≥ 0 for all t ≥ t∗ + 1 if and only if

ψt∗+1 ≥
1

βt
∗+1(1− q)

∞
∑

n=0

(

(1− q)δ

1− qβδ

)n+1

(u(xt∗+n+2)− βu(xt∗+1+n) + (1− β)M(U, ā))

2. If u(xt∗+1) − βu(xt∗) + (1 − β)M(U, ā) < 0 then ψt ≥ 0 for all t ≥ t∗ + 1 if and only if

ψt∗+1 ≥ 0.
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Proof. Consider an initial condition of the form

ψ̃t∗+1 =
∞
∑

n=0

1

αn+1
ht∗+1+n +∆ (F.9)

for some ∆ to be determined. Replacing the initial condition in (F.9) in (F.8) above, we get

ψ̃t∗+1+k = αk
∞
∑

n=0

1

αn+1
ht∗+1+n + αk∆−

k−1
∑

n=0

αk−1−nht∗+1+n

=

∞
∑

n=k

αk−1−nht∗+1+n + αk∆

= αk

(

∞
∑

n=k

1

αn+1
ht∗+1+n +∆

)

Hence, ψ̃t∗+1+n is nonnegative if

∆ ≥ −

∞
∑

n=k

1

αn+1
ht∗+1+n,∀k ≥ 0. (F.10)

Let’s define

Hk ≡

∞
∑

n=k

1

αn+1
ht∗+1+n,

where ht is increasing.

First, let’s consider the case with u(xt∗+1)− βu(xt∗) + (1− β)M(U, ā) ≥ 0. Because ht∗+1+n is

increasing, we have in this case that ht∗+1+n is positive for all n, so we need to take ∆ = 0, which

corresponds to the condition in the Lemma.

Next, we consider the case with u(xt∗+1) − βu(xt∗) + (1 − β)M(U, ā) < 0. Let’s define t† =

sup{t > t∗ + 1 : ht ≤ 0}. By definition, Hk is decreasing for k < t† − t∗ − 1 and increasing for

k ≥ t†− t∗−1. This means that Hk has a minimum at k† ≡ t†− t∗−1, and so −Hk has a maximum

at k†. Thus, ψ̃t∗+1+k is nonnegative if and if

∆ ≥ −

∞
∑

n=k†

1

αn+1
ht∗+1+n.

Replacing in (F.9) we get that

ψ̃t∗+1 ≥
∞
∑

n=0

1

αn+1
ht∗+1+n −

∞
∑

n=k†

1

αn+1
ht∗+1+n

=

k†−1
∑

n=0

1

αn+1
ht∗+1+n.
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By definition of k†, ht∗+1+n for all n ≤ k† − 1 which means that
∑k†−1

n=0
1

αn+1ht∗+1+n ≤ 0, so it is

enough to consider ψ̃t∗+1 ≥ 0

F.2 Verification of Optimal Policy

F.2.1 Case: 0 < t∗ < t̄

First, we consider a policy in which 0 < t∗ < t̄. The following propositions characterizes sufficient

conditions for this policy to be optimal.

Proposition F.7. Let t̄ = max{t ≥ 0 : (βδ)t ≥ q}. Let 0 < t∗ ≤ t̄ be such that: if t∗ = 1 then

Vt∗ − V0 ≥
1− (βδ)t

∗

(βδ)t∗(1− βδq)

(

∞
∑

n=1

p1t∗+n

1− p1t∗
Vt∗+n − Vt∗

)

Vt∗+1 − Vt∗ ≤
1− βδ

1− βδq

∞
∑

n=1

(

p1t∗+n

1− p1t∗
Vt∗+n − Vt∗

)

,

and if t∗ > 1 then

Vt∗ − V0 ≥
1− (βδ)t

∗

(βδ)t∗(1− βδq)

(

∞
∑

n=1

pt
∗

t∗+n

1− pt
∗

t∗
Vt∗+n − Vt∗

)

0 ≥ u(xt∗)− βu(xt∗−1) + (1− β)M(U, ā)

Vt∗+1 − Vt∗ ≤
1− βδ

1− βδq

∞
∑

n=1

(

pt
∗

t∗+n

1− pt
∗

t∗
Vt∗+n − Vt∗

)

.

If this conditions are satisfied, then the optimal policy is {pt
∗

t }t≥0.

Proof. The first condition at time t∗ yields

Vt∗ − V0 +
(

(βδ)t
∗

− 1
)

ψ0 = η.

Replacing η in the first order condition at time t∗ + 1 yields

Vt∗+1 − Vt∗ −
(

(βδ)t
∗

− (βδ)t
∗+1
)

ψ0 + (βδ)t
∗+1(1− q)ψt∗+1 = 0.

Solving for ψ0 and η we get

ψ0 =
Vt∗+1 − Vt∗

(βδ)t∗ − (βδ)t∗+1
+
βδ(1 − q)

1− βδ
ψt∗+1 (F.11)

η =
Vt∗ − Vt∗+1 + (βδ)t

∗
(Vt∗+1 − βδVt∗)

(βδ)t∗ − (βδ)t∗+1
− V0 −

βδ(1 − (βδ)t
∗
)

1− βδ
(1− q)ψt∗+1 (F.12)
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From here we get that

(1− q)ψ0 + η =

(

(βδ)t
∗
− q
)

Vt∗+1 −
(

(βδ)t
∗+1 − q

)

Vt∗

(βδ)t∗ − (βδ)t∗+1
− V0 +

βδ((βδ)t
∗
− q)

1− βδ
(1− q)ψt∗+1 (F.13)

Notice that t∗ ≤ min{t > 0 : (βδ)t ≥ q}, which means that 1+
(βδ)t

∗+1−q

1−βδ > 0 so the solution always

involves choosing the smallest possible ψt∗+1. Suppose that t∗ ≥ 1 satisfies the conditions in the

proposition and consider the multiplier

η =
Vt∗ − Vt∗+1 + (βδ)t

∗
(Vt∗+1 − βδVt∗)

(βδ)t∗ − (βδ)t∗+1
− V0 −

βδ(1 − (βδ)t
∗
)

1− βδ
(1− q)ψt∗+1

ψ0 =
Vt∗+1 − Vt∗

(βδ)t
∗
− (βδ)t

∗+1
+
βδ(1 − q)

1− βδ
ψt∗+1

ψt = 0, 0 < t ≤ t∗

ψt =
1

βt(1− q)

∞
∑

n=0

(

(1− q)δ

1− qβδ

)n+1

(u(xt+n+1)− βu(xt+n) + (1− β)M(U, ā)) , t ≥ t∗ + 1

By Lemma F.6 , the multipliers {ψt}t≥0 are nonnegative. By weak duality, to verify the optimality

of {p∗t}t≥0, it is enough to verify that the proposed multipliers are dual feasible and that (1−q)ψ0+η

equals the expected payoff of {pt
∗

t }t≥0.

Step 1: First, we verify that (1− q)ψ0+η =
∑∞

t=0 p
∗
tVt−V0. Replacing the expressions for η and

ψ0 we get

(1− q)ψ0 + η =

(

(βδ)t
∗
− q
)

Vt∗+1 −
(

(βδ)t
∗+1 − q

)

Vt∗

(βδ)t∗ − (βδ)t∗+1
− V0

+
(βδ)t

∗
− q

1− βδ

1

(βδ)t∗

∞
∑

n=0

(

1− q

1− qβδ

)n+1

δt
∗+n+2 (u(xt∗+n+2)− βu(xt∗+n+1) + (1− β)M(U, ā))

(F.14)

which can be written as

(1− q)ψ0 + η =

(

(βδ)t
∗
− q
)

Vt∗+1 −
(

(βδ)t
∗+1 − q

)

Vt∗

(βδ)t∗ − (βδ)t∗+1
− V0

+
(βδ)t

∗
− q

(δβ)t∗ − (δβ)t∗+1

∞
∑

n=0

(

1− q

1− qβδ

)n+1

(Vt∗+n+2 − (1 + βδ)Vt∗+n+1 + βδVt∗+n) (F.15)
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Using telescopic sums, we have that

∞
∑

n=0

(

1− q

1− qβδ

)n+1

(Vt∗+n+2 − (1 + βδ)Vt∗+n+1 + βδVt∗+n) =

∞
∑

n=0

[

(

1− q

1− qβδ

)n+1

Vt∗+n+2 −

(

1− q

1− qβδ

)n

Vt∗+n+1

]

−

∞
∑

n=0

[

(

1− q

1− qβδ

)n+1

−

(

1− q

1− qβδ

)n
]

Vt∗+n+1

−βδ

∞
∑

n=0

[

(

1− q

1− qβδ

)n+1

Vt∗+n+1 −

(

1− q

1− qβδ

)n

Vt∗+n

]

+ βδ

∞
∑

n=0

[

(

1− q

1− qβδ

)n+1

−

(

1− q

1− qβδ

)n
]

Vt∗+n =

βδVt∗ − Vt∗+1 +
q(1− βδ)

1− qβδ

∞
∑

n=0

(

1− q

1− qβδ

)n

Vt∗+n+1 − βδ
q(1− βδ)

1− qβδ

∞
∑

n=0

(

1− q

1− qβδ

)n

Vt∗+n =

βδ

(

1−
q(1− βδ)

1− qβδ

)

Vt∗ − Vt∗+1 −
q(1− βδ)

1− qβδ

(

βδ(1 − q)

1− qβδ
− 1

) ∞
∑

n=0

(

1− q

1− qβδ

)n

Vt∗+n+1 =

βδ(1 − q)

1− qβδ
Vt∗ − Vt∗+1 +

q(1− βδ)2

(1− qβδ)2

∞
∑

n=0

(

1− q

1− qβδ

)n

Vt∗+n+1

Replacing in equation (F.15) we get

(1− q)ψ0 + η =

(

(βδ)t
∗
− q
)

Vt∗+1 −
(

(βδ)t
∗+1 − q

)

Vt∗

(βδ)t∗ − (βδ)t∗+1
− V0

+
(βδ)t

∗
− q

(βδ)t
∗
− (βδ)t

∗+1

(

βδ(1 − q)

1− qβδ
Vt∗ − Vt∗+1 +

q(1− βδ)2

(1− qβδ)2

∞
∑

n=0

(

1− q

1− qβδ

)n

Vt∗+n+1

)

=

q(1− βδ)

1− qβδ

1− (βδ)t
∗+1

(βδ)t∗ − (βδ)t∗+1
Vt∗ − V0 +

(βδ)t
∗
− q

(βδ)t∗ − (βδ)t∗+1

q(1− βδ)2

(1− qβδ)2

∞
∑

n=0

(

1− q

1− qβδ

)n

Vt∗+n+1.

So, after some manipulations and replacing pt
∗

t we get that

(1− q)ψ0 + η =
q(1− βδ)

1− qβδ

1− (βδ)t
∗+1

(βδ)t∗ − (βδ)t∗+1
Vt∗ − V0 +

(βδ)t
∗
− q

(βδ)t∗ − (βδ)t∗+1

q(1− βδ)2

(1− qβδ)2

∞
∑

n=0

(

1− q

1− qβδ

)n

Vt∗+n+1

=
q(1− (βδ)t

∗+1)

(βδ)t∗ − q(βδ)t∗+1
Vt∗ − V0 +

(βδ)t
∗
− q

(βδ)t∗ − q(βδ)t∗+1

q(1− βδ)

1− qβδ

∞
∑

n=0

(

1− q

1− qβδ

)n

Vt∗+n+1

= pt
∗

t∗Vt∗ − V0 +
∞
∑

n=0

pt
∗

t∗+1

(

1− q

1− qβδ

)n

Vt∗+n+1

=

∞
∑

n=0

pt
∗

t∗+nVt∗+n − V0 =

∞
∑

t=0

p∗tVt − V0
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Step 2: The only step left is to verify that η ≥ 0 and ψt∗+1 ≥ 0. We can write

ψ0 =
Vt∗+1 − Vt∗

(βδ)t∗ − (βδ)t∗+1

+
1

(βδ)t∗ − (βδ)t∗+1

∞
∑

n=0

(

(1− q)

1− qβδ

)n+1

δt
∗+n+2 (u(xt∗+n+2)− βu(xt∗+n+1) + (1− β)M(U, ā))

= −
1

(βδ)t∗ − (βδ)t∗+1

(

1− βδ

1− qβδ

)

Vt∗ +
1

(βδ)t∗ − (βδ)t∗+1

q(1− βδ)2

(1− qβδ)2

∞
∑

n=0

(

1− q

1− qβδ

)n

Vt∗+n+1,

which means that

(1− q)ψ0 = −
1− q

(βδ)t∗ − (βδ)t∗+1

(

1− βδ

1− qβδ

)

Vt∗ +
1− q

(βδ)t∗ − (βδ)t∗+1

q(1− βδ)2

(1− qβδ)2

∞
∑

n=0

(

1− q

1− qβδ

)n

Vt∗+n+1

Using the definition for pt
∗

t we get

1− q

(βδ)t∗ − (βδ)t∗+1

(

1− βδ

1− qβδ

)

1

pt
∗

t∗
=

1− q

q(1− (βδ)t∗+1)

1− q

(βδ)t∗ − (βδ)t∗+1

q(1− βδ)2

(1− qβδ)2
1

pt
∗

t∗+1

=
1− q

(βδ)t∗ − q
,

so

(1− q)ψ0 = −
1− q

q(1− (βδ)t∗+1)
pt

∗

t∗Vt∗ +
1− q

(βδ)t∗ − q

∞
∑

n=0

pt
∗

t∗+1+nVt∗+n+1

Hence, replacing in (1− q)ψ0 + η =
∑∞

t=0 p
∗
tVt − V0 (Step 1) we find that

η =
1− q(βδ)t

∗+1

q(1− (βδ)t∗+1)
pt

∗

t∗Vt∗ − V0 −
1− (βδ)t

∗

(βδ)t∗ − q(βδ)t∗+1

(βδ)t
∗
− q(βδ)t

∗+1

(βδ)t∗ − q

∞
∑

n=0

pt
∗

t∗+1+nVt∗+n+1

= Vt∗ − V0 −
1− (βδ)t

∗

(βδ)t∗ − q(βδ)t∗+1

(

∞
∑

n=1

pt
∗

t∗+n

1− pt
∗

t∗
Vt∗+n − Vt∗

)

≥ 0

In the case of ψt∗+1, notice that

0 ≤
1

βt∗+1(1− q)

∞
∑

n=0

(

(1− q)δ

1− qβδ

)n+1

(u(xt∗+n+2)− βu(xt∗+1+n) + (1− β)M(U, ā))
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if and only if

0 ≤

∞
∑

n=0

(

(1− q)

1− qβ

)n+1

δt
∗+n+2 (u(xt∗+n+2)− βu(xt∗+1+n) + (1− β)M(U, ā))

=
βδ(1 − q)

1− qβδ
Vt∗ − Vt∗+1 +

q(1− βδ)2

(1− qβδ)2

∞
∑

n=0

(

1− q

1− qβδ

)n

Vt∗+n+1

∝ Vt∗ − Vt∗+1 +
1− βδ

1− qβδ

∞
∑

n=1

(

pt
∗

t∗+n

1− pt
∗

t∗
Vt∗+n − Vt∗

)

Step 3: Feasibility for t < t∗. If t∗ > 1, then we We need to verify that

Vt − V0 − η +
(

(βδ)t − 1
)

ψ0 ≤ 0, ∀t < t∗.

If we replace η and ψ0 we get

Vt − Vt∗ +
(βδ)t − (βδ)t

∗

(βδ)t∗ − (βδ)t∗+1
(Vt∗+1 − Vt∗) +

(1− q)
(

(βδ)t+1 − (βδ)t
∗+1
)

1− βδ
ψt∗+1 ≤ 0 (F.16)

Evaluating (F.16) at time t∗ − 1 and simplifying we get

βδ(Vt∗−1 − Vt∗) + Vt∗+1 − Vt∗ +
βδ(1 − q)

(

(βδ)t
∗
− (βδ)t

∗+1
)

1− βδ
ψt∗+1 ≤ 0.

If we replace

βδ(Vt∗−1 − Vt∗) + Vt∗+1 − Vt∗ = δt
∗+1+n (u(xt∗+n+1)− βu(xt∗+n) + (1− β)M(U, ā))

and ψt∗+1 we get

∞
∑

n=0

(

(1− q)δ

1− qβδ

)n

(u(xt∗+n+1)− βu(xt∗+n) + (1− β)M(U, ā)) ≤ 0

Feasibility for t < t∗ follows from the following lemma

Lemma F.8. If u(xt∗)− βu(xt∗−1) + (1− β)M(U, ā) ≤ 0 then

Vt − V0 − η +
(

(βδ)t − 1
)

ψ0 ≤ 0, ∀t < t∗.

Proof. We prove the statement by induction. Let

Ft = Vt − V0 − η +
(

(βδ)t − 1
)

ψ0
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an consider periods t+ 1, t and t− 1, for 1 ≤ t ≤ t∗ − 1. Then, we get

βδ(Ft − Ft−1) = βδ(Vt − Vt−1) +
(

(βδ)t+1 − (βδ)t
)

ψ0

(Ft+1 − Ft) = βδ(Vt+1 − Vt) +
(

(βδ)t+1 − (βδ)t
)

ψ0,

so taking difference we get

βδ(Ft − Ft−1)− (Ft+1 − Ft) = βδ(Vt − Vt−1)− (Vt+1 − Vt)

= − (u(xt+1)− βu(xt) + (1− β)M(U, ā))

Given that u(xt+1)− βu(xt) + (1− β)M(U, ā) ≤ 0, we get that

βδ(Ft − Ft−1) ≥ (Ft+1 − Ft) ≥ 0

which means that

Ft−1 ≤ Ft.

The results follows from the fact that Ft∗ = 0 and that u(xt+1) − βu(xt) + (1 − β)M(U, ā) is

increasing.

Notice that

ψt∗+1 =
1

βt
∗+1(1− q)

∞
∑

n=0

(

(1− q)δ

1− qβδ

)n+1

(u(xt∗+n+2)− βu(xt∗+1+n) + (1− β)M(U, ā)) ≥ 0

Suppose that

0 ≥
∞
∑

n=0

(

(1− q)δ

1− qβδ

)n+1

(u(xt∗+n+1)− βu(xt∗+n) + (1− β)M(U, ā))

which is equivalent to

0 ≥

∞
∑

n=0

(

(1− q)δ

1− qβδ

)n

(u(xt∗+n+1)− βu(xt∗+n) + (1− β)M(U, ā)) .
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If this conditions are satisfied we get that

∞
∑

n=0

(

(1− q)δ

1− qβδ

)n+1

(u(xt∗+n+1)− βu(xt∗+n) + (1− β)M(U, ā))

≥

∞
∑

n=0

(

(1− q)δ

1− qβδ

)n

(u(xt∗+n+1)− βu(xt∗+n) + (1− β)M(U, ā)) ,

which is equivalent to

0 ≥ u(xt∗+1)− βu(xt∗) + (1− β)M(U, ā).

By Lemma F.4, the right hand side is monotonic, and this means that

0 ≥ u(xt∗)− βu(xt∗−1) + (1− β)M(U, ā).

Moreover, following similar computations as the ones we did to compute (1− q)ψ0 + η we get that

0 ≥
∞
∑

n=0

(

(1− q)δ

1− qβδ

)n+1

(u(xt∗+n+1)− βu(xt∗+n) + (1− β)M(U, ā))

is equivalent to

Vt∗ − Vt∗−1 ≥
1− βδ

1− βδq

∞
∑

n=1

(

pt
∗

t∗−1+n

1− pt
∗

t∗
Vt∗−1+n − Vt∗

)

F.2.2 Case: p0 > 0

Next, we consider the case where p0 > 0. In this case,
∑

t≥1 pt < 1 so η = 0.

Proposition F.9. Suppose that

V1 − V0 ≤
(1− βδ)

βδ(1 − q)

∞
∑

t=1

(

p0t
1− p00

Vt − V1

)

then the optimal policy is {p0t }t≥0

Proof. Because p0 > 0, the constraint
∑

t≥1 pt ≤ 1 is slack and η = 0. Consider the multiplier at

t = 1

ψ1 =
1

βδ(1 − q)

∞
∑

n=0

(

(1− q)δ

1− qβδ

)n+1

δn+2 (u(xn+2)− βu(xn+1) + (1− β)M(U, ā))

=
1

1− qβδ
V0 −

1

βδ(1 − q)
V1 +

q(1− βδ)2

(1 − qβδ)2
1

βδ(1 − q)

∞
∑

n=0

(

1− q

1− qβδ

)n

Vn+1,
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and from the first order condition we have that

ψ0 =
V1 − V0
1− βδ

+ ψ1

βδ
(

1− q
)

1− βδ
.

From here, we get that

(1− q)ψ0 + η =
(1− q)(V1 − V0)

1− βδ

+
βδ
(

1− q
)2

1− βδ

(

1

1− qβδ
V0 −

1

βδ(1 − q)
V1 +

q(1− βδ)2

(1− qβδ)2
1

βδ(1 − q)

∞
∑

n=0

(

1− q

1− qβδ

)n

Vn+1

)

= −
(1− q)

1− βδq
V0 +

q(1− βδ)

(1− qβδ)

∞
∑

n=0

(

1− q

1− qβδ

)n+1

Vn+1

=

∞
∑

t=0

p0tVt − V0

which verifies that the value of the dual problem equals the value of the primal. We only need to

verify that ψ1 ≥ 0 so the constructed multipliers are dual feasible.

ψ1 =
1

1− qβδ
V0 −

1

βδ(1 − q)
V1 +

(1− βδ)

βδ(1 − q)2

∞
∑

t=1

ptVt

=
1

1− βδq

[

V0 − V1 +
(1− βδ)

βδ(1 − q)

∞
∑

t=1

(

p0t
1− p00

Vt − V1

)

]

,

which means that ψ1 ≥ 0 if and only if

(1− βδ)

βδ(1 − q)

∞
∑

t=1

(

p0t
1− p00

Vt − V1

)

≥ V1 − V0

F.2.3 Case: pt̄ + pt̄+1 = 1

Finally, we need to consider the case in which for all 0 < t∗ ≤ t̄

0 ≥

∞
∑

n=0

(

(1− q)δ

1− qβδ

)n+1

(u(xt∗+n+2)− βu(xt∗+n+1) + (1− β)M(U, ā)) (F.17)

which means that the conditions in Propositions F.7 and F.9 are not satisfied. In this case, we

consider a policy such that the incentive compatibility constraint constraint is binding at time zero,
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pt̄ + pt̄+1 = 1 and the incentive compatibility constraint is slack at t̄, t̄+ 1, which yields

ψ0 =
Vt̄+1 − Vt̄

(βδ)t̄ − (βδ)t̄+1
(F.18)

η = Vt̄ − V0 −
1− (βδ)t̄

(βδ)t̄ − (βδ)t̄+1
(Vt̄+1 − Vt̄) (F.19)

This means that the probability of monitoring at time t̄ is

pt̄ =
q − (βδ)t̄+1

(βδ)t̄ (1− βδ)

Because the inequality (F.17) is satisfied, we can take ψt = 0 for all 0 < t < t̄ and satisfy all the

complementary constraints at 0 < t < t̄. We can pin down the multipliers ψ0 and η using the first

order conditions at time t̄ and t̄ + 1. Replacing in the first order conditions at time t̄ + 2, we get

that the complementary slackness condition is satisfied for ψt̄+2 = 0 if and only if

(1 + βδ)Vt̄+1 − Vt̄+2 − βδVt̄ = − (u(xt̄+2)− βu(xt̄+1) + (1− β)M(U, ā)) > 0,

which is necessarily the case if

0 ≥

∞
∑

n=0

(

(1− q)δ

1− qβδ

)n+1

(u(xt̄+n+2)− βu(xt̄+n+1) + (1− β)M(U, ā)) .

Finally, we verify that

(1− q)ψ0 + η = (1− q)
Vt̄+1 − Vt̄

(βδ)t̄ − (βδ)t̄+1
+ Vt̄ − V0 −

1− (βδ)t̄

(βδ)t̄ − (βδ)t̄+1
(Vt̄+1 − Vt̄)

=
(βδ)t̄ − q

(βδ)t̄ − (βδ)t̄+1
(Vt̄+1 − Vt̄) + Vt̄ − V0

= pt̄Vt̄ + pt̄+1Vt̄+1 − V0.
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