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A Analysis of Relaxed Problem using Dynamic Programming

As an intermediate step toward characterizing the optimal policy in the general model, we study a
relaxed problem that ignores the agent’s incentive constraint. When u(-) is convex, and both the
cost of monitoring ¢ and effort k are small enough, the solution of such a relaxed problem satisfies
the agent’s incentive constraint being thus the optimal policy Moreover, even if moral hazard is
severe, the trade-offs identified in the unconstrained problem influence the structure of the optimal
policy.

Without incentive constraints, it is convenient to analyze the problem using dynamic program-
ming. Consider the evolution of reputation between two inspection dates. Given that the firm

exerts full effort, a = a, the reputation between two inspections dates evolves according to
Zilt = )\(C_L — ﬂi‘t) (Al)

The optimal policy is Markovian in reputation. Denoting by A the set of reputations that lead
to immediate inspection, the principal payoff given beliefs x, which we denote by U(z), solves the

Hamilton-Jacobi-Bellman (HJB) equation
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(x)+Na—2)U'(z), 2 ¢ A (A.2a)
U)=2zU(1)+ (1 —-2)U0) —¢, € A. (A.2b)

We can guess and then verify that the optimal policy is given by an audit set A = [z, ], where

*Duke University, Fuqua School of Business. email: felipe.varas@duke.edu

fStanford University, GSB. email: imvial@stanford.edu

iStanford University, GSB. email: skrz@stanford.edu

IThe solution of this relaxed problem also characterizes the optimal policy when effort (but not quality) is ob-
servable (recall we assume u'(0) > 1 so full effort is optimal in the first best).



z < a < 7T, where it can be shown that the threshold & € {z,T} satisfies the boundary conditions:

U@)=zU1)+ (1 —-2)U(0) —c (A.3a)
U'(z) =U(1) —U(0). (A.3b)

Hence, we have the following standard result:

Result A.1 (Benchmark). Suppose that U is a function satisfying the HJB equation (A 2al)-(A-2Dl)
together with the boundary conditions (A.3al)-(A.3D)). Then U is the value function of the Principal’s

optimization problem and the optimal policy is to monitor the firm whenever z; € A = [z, T].

Ul(x)

zf A= [z,7] xf

Figure 1: Value Function. The optimal policy requires to monitor whenever reputation enters the
audit set, z; € A.

Figurelillustrates the principal’s payoff as a function of beliefs. Observe that after an inspection
beliefs reset to either x = 0 or x = 1 because reviews are fully informative. Then, beliefs begin
to drift deterministically toward a, which lies in the interior of the audit set A. When beliefs hit
the boundary of A, the principal monitors the firm for certain. Naturally, the principal acquires
information when enough uncertainty has accumulated, namely when the distance between U(z)
and the line connecting U(0) and U(1) gets large and when beliefs get close to @, so the drift in
beliefs is small.

The size of the monitoring region A depends on the convexity of the principal’s objective func-
tion and the cost of monitoring ¢ since these parameters capture the value and cost of information,
respectively. In the extreme case when u(-) is linear (or ¢ is too large) the optimal policy is never
to monitor the firm but let beliefs converge to a (but of course in this case the incentive constraint
would be violated since there are no rewards to effort in the absence of monitoring). By contrast,

as u(-) becomes more convex, the monitoring region widens, leading to more frequent monitoring.



Eventually, the incentive constraint becomes slack, which, as mentioned above, implies that the
solution to the relaxed problem is the optimal monitoring policy.

Figure 1 illustrates the optimal policy as a function of beliefs. Notice that between inspection
dates beliefs evolve deterministically and monotonically over time, hence there is an equivalent
representation of the monitoring policy based upon the time since last review, t — T, and the

outcome observed in the last review, 07, . Specifically, define:

1 1—a
THEinf{t:xt:f,xozl}:XIOg <_ C_L>
T—a
1 _
TLEinf{t:xt:g,xon}:Xlog(@iﬂj)-

We can then represent the policy by the n;,—monitoring time as T,, = T},_1 + TQT7L71H

Remark A.2. This representation of the optimal monitoring policy applies to the case in which
both 11, and g are finite. Depending on the specific parameters of the model, either Tp, or Ty can
be infinite, or in other words, there is no further monitoring after some outcomes. In terms of the
policy specified as a function of beliefs this means that either x = a or T = a. In this case, the value

matching and smooth pasting conditions are only valid at the threshold that is different from a.

A.1 Proof of Result [A.1]
Proof. Differentiating the HJB equation we get that for any = ¢ [z, T] we have

(r+ MU' (z) =/ (z) + M@ — z)U"(z) (A.4a)

(r+20)U"(z) = u"(z) + AMa — z)U" (x) (A.4b)

Using (A.4D)) we get that for any = > @ we have U”(z) = 0 = U"”(z) > 0. This means that
U'(Z) > 0= U"(z) > 0 for all x > Z. Similarly, for any x < @ we have U"(z) =0 = U"'(z) <0

which means that U”(z) > 0 = U”(z) > 0 for all # < z. Evaluating (A4a) at T and using the

smooth pasting condition we find that
(r+X)U(Q1)-U(0) = (T) + Aa—z)U"(7)
Hence, U we have that U”(Z) > 0 and U”(z) > 0 if and only if
u(x

x) u'(
r+A§Uﬂ%JH®§r+A

(A.5)

2The only exception would be the case when zo € (0,1). In this case T1 = §log (107_6) if xo >7T; Ty =

T—a

% log (’;U—?) if o < z and T1 = 0 otherwise. After T1, the policy would be the one described in the text.



The HJB equation together with the boundary conditions imply that

r(U(0) +
r(U(0) +

It follows from the convexity of u that inequality (ALH]) is satisfied. The fact that U is increasing
follows directly from the convexity of U and equation (A.4al).
Next, let’s define
H(z)=2UQ1)+ (1 —2)U(0) — U(x).

The convexity of U implies that H is concave and H(x) = ¢ for x € [z,Z| and H(x) < c¢ for
x ¢ [z,Z]. Hence, we get that

2U(1)+ (1 —2)U(z) —U(z) < c. (A.6)
Similarly, let’s define
G(z)=u(x)+ ANa—=z)(UQ) —U(0)) — r(zU(1) + (1 —z)U(0) — ¢).

Differentiating the previous equation twice we get that G”(z) = «’(x) > 0. Because U(-) is
continuously differentiable we have that G(z) = G(Z) = 0. Hence, we can conclude that G(z) < 0
for all x € (z,%). Accordingly,

0> u(x) + Na —2)U'(z) —rU(x), x € [0,1]. (A.7)

The final step is to verify that we can not improve the payoff using an alternative policy. Let

(T5,)n>1 and let ;¢ be the belief process induce by this policy. Applying Ito’s lemma to the process
e U () we get

e " (Na — 3)U' (%) — rU(7))ds + Z e " (2U(1) + (1 — Z,)U(0) — U(s))

s<t

e "ElU(#)] = U(xo) + E

>

t
e "u(zy)ds — Z e el (A.8)

s<t

SU(ZEQ)—E

>




where we have used inequalities (A6) and (A.7). Taking the limit when ¢ — co we conclude that

U(xg) > E / e "u(Zy)ds — Z e~ Tne
0

Trn>0

The proof concludes noting that (A.8)) holds with equality for the optimal policy. O

B Linear Case: Alternative Proof of Proposition 3|

Proof. Let T be the first monitoring time so the principal’s cost at time zero satisfies the recursion
Co = Eole ™ (c + Cp)
and the incentive compatibility constraint at time zero is
EoleT] > g

We show that if there is any time 7 such that the incentive compatibility constraint is slack, then
we can find a new policy that satisfies the IC constraint and yields a lower expected monitoring
cost to the principal. In fact, it is enough to show that if the IC constraint is slack at some time
7 then we can find an alternative policy that leaves Eg[e~"tMT] unchanged at time zero, remains
IC at 7 > 0 and reduces Eyle™"7]. We only consider the case in which there is positive density
just before 7 as the argument for the case in which there is an atom at 7 and zero probability
just before 7 is analogous. Suppose the IC constraint is slack at time 7 and let 77 = sup{r <
7 : IC constraint binds}: such a date must exist as otherwise we could postpone somewhat all
inspection times before 7 and still satisfy all IC constraints (obviously saving costs). Moreover, we
can assume without loss of generality that 77 = 0. Suppose the monitoring distribution F(7) is
such that f(7) > 0 for some interval (7 —¢,7), then we can find small ¢y and 1 and construct an
alternative monitoring distribution F'(7) that coincides with F(r) outside the intervals (0, ¢y) and

(T — €0, T+ €p). For any 7 € (7 — €p,7) the density of the alternative policy is

while for 7 € (0, ¢) it is

and for 7 € (7,7 + ¢) it is



We can pick a € (0,1) such that IC constraint is not affected at 7 = 0, that is o € (0,1) satisfies

€0 T+e€o T
a/ et 4 (1-— a)/ e~ tN7qr — / e~ tNTqr =0,
0 T T—eo

and we can pick ¢y and n small enough so that the IC constraint still holds for all 7 > 0. Because

the IC constraint is not affected at 7 = 0 we have that

/ e_(r+’\)TdF(T):/ e~ TTNTAE (7).

0 0

Define the random variable z = e~ "+M7 and let G and G be the respective CDFs of z. We have

that . . )
/Osz(z):/O 2dG(z).

By construction G(z) and G(z) have same mean and cross only once which means that G(2) is a

mean-preserving spread of G(z). Noting that

oo 1
/ e "TdF (1) = / 2 dG(z),
0 0

where 2"/t is a strictly concave function, and using the fact that G(z) is a mean-preserving

spread of G(z), we immediately conclude that

T 1
/ 2 dG(z) </ 2 dG(z),
0 0

and so the monitoring distribution F(r) yields a lower cost of monitoring: This contradicts the
optimality of F'(7) and implies that the optimal policy must be such the IC constraint binds at all

time, hence it is given by a constant monitoring rate m*. ]



C Comparative Statics

C.1 Proof of Proposition 4]

Comparative static ¢: Let Ggot and Grapng be the maximization problems in the operators above

so we write the optimization in the fixed point problem as

max  aGrang + (1 — @)Get
a€(0,1]

We can fix the continuation values and show that we have single crossing in (¢, Ug,Ur). In the

previous expressions, we have that

a((;'rand - Gdot) _ e—r% r e(r-i—)\)%q + )\g _ e—T’F
d(—c)

which is negative if 7 < 7. Next, we have that

Uy l—gq

r+A)7 _ (rN)T o
NCrand = Caet) =7 [(76( i 1) gzl + <71 ‘ g) / e_(Hm)(T_%)mxde] —e Tyl

I—gq

If we replace

— (2] —
/OO e—(r-l—m)('r—‘?)x?_dT __4a + Iz —a
- r+m r+A+m

00 . 0 _ 5
/ e—(r-i—m)(r—i')(l —l’g)dT _ l-a Ty —a ’

T

and after some tedious simplifications we obtain

O(Grand — Gaet) —r3 (r+0)7 M 9 (r+A)? A1 —gq) _ 7 8
— (1 — T T % 1—elr T = o rT .0
Uy | Mm@t Rt ( ¢ —) Y i B

= e’\%ga:g + (e‘ﬁ — My

Noticing that



we obtain

a(Cyrand - Gdet) MNP0 —rf Y /\g P —r7 .0
e A C 9 N
— = AT r —r7 A = (r+XN)T — (AT 1
q(0—a) [ g e T—i-)\g} qa—e <9+a(e ))
_ A T A _ —r7 =
<q@—a)+ |e m—l—e P ga—q@—a)—e"a

— AT r —rT )\ = —rT =
G

The last expression is increasing in 7, which means that if 7 < 7 then

8(Gyrand - Gdet) M [ —(r4+N)7 ra
< — — <
Uy = <e g) g =0

where the last inequality follows from the IC constraint. We can repeat the same calculations for
Ur.

o . (T+)\)7: _ 1 _ (T+)\)7: [o¢] .
a(CzranadUL Gdet) — et [(6 - — 1) q(l - x?_) 4 (%qg / e—(r—l—m)(T—T)m(l —m?_)dT

7

Aq _
AT .0 rT AT S AN S TR )
=eq(l —xz) + (e g) s )\q(l a)—e (1 —x%)
Replacing
1-2l=eM1-0)+(1-e?)(1-a)
we get that
8(Gyrand - Gdet) _ b r A Aq _ _ 0
— _ T rT = 1 _ _ rT 1 _ v
o0, qg@a—0)+ (e 4 v +e RV (1—-a)—e(1—2x%)
= AP r e N _ —(r+N7 (= N1
=q(a 9)+<e —r+/\g+ T+>\g>( a)—e (a 0+ eV (1 a))
o T —rp_ A @) —e (1 —a
[ T+ A\q 7‘—1—)@} gl—a)—e(1-2a)
<0

where the last inequality follows if 7 < 7 by the same reason as in the case of Uy. Hence, in order
to verify single crossing in (—c,Ur,Up) it is enough to show that 7 < 7. Notice that, for a given
continuation value (Ur,Uy), the solution to the deterministic problem, 7, is increasing in ¢, and
bind (

that whenever 7 < 7 so the IC constraint is slack), the solution to the optimal control problem

must be 7. Let ¢! = sup{c > 0:7 < P} 50 for any ¢ < ¢l the solution for a given continuation



value (Ur,Ug) is 7. On the other hand, for any ¢ > ¢/ we have that 7 = 7”4 > 7 which
means that Grang — Gqet satisfies single crossing in (Ur, Up, —c¢) which means that «(Up, Ur,¢) is
decreasing in Uy, Uy, and increasing in ¢. Moreover, as Uy, and Uy are both decreasing in ¢ we
can conclude that a(Ug(c),Ur(c),c) is increasing in ¢, which means that there is ¢ such that for
any ¢ < ¢ the solution has deterministic monitoring while for any ¢ > ¢ the solution has random
monitoring.

Next, we prove that random monitoring dominates deterministic monitoring when k is large
enough and when a is high or low enough. For this, it is enough to establish that full random
monitoring (that is 7 = 0) dominates fully deterministic as this guarantees that some randomization
is going to be used in the optimal policy. Before proving the statements in the proposition, we
start proving the following lemma:

Lemma C.1. For any q € (0,1),

*
bind m
—TrT
>

e
r+m*

Proof. If we let 3 = r/(r + ), then by replacing 7°™4 and m* we can verify that it is enough to
show that

Consider the function
H(q) = B8¢" "+ (1-B)¢" -1,

so we need to show that H(g) > 0 for all ¢ € (0,1). The function H is such H(0) > 0 and H(1) = 0.

Moreover, the derivate of H is given by
H'(q)=BB-1)¢"?+(1-8)B¢" " =-p(1-B)¢"*(1-¢) <0,
and so it follows that H(q) > 0 for all ¢ € (0,1). O

Optimality of random monitoring for large k: We compare the payoff of deterministic
monitoring with the payoff of full random monitoring (that is 7 = 0) when k converges to its
upper bound, A\/(r + ) and show that the difference between the benefit of using random and
deterministic monitoring converge to zero while the difference in their cost remains bounded away
of zero. For large k, we can restrict attention to monitoring policies in which the IC constraint
is binding, and it is enough to compare policies that rely exclusively on deterministic or random
monitoring (the argument to rule out policies that alternate between random and deterministic
depending on 67, , is analogous).
First, we look at the difference in the cost. The cost of a deterministic policy is
=TT qﬁ

det __ — _ =
¢ S l—eT 1—¢f




while the cost of the random policy is

*
Crand — m_ — 4

1
r 61—

s

The difference in the cost is

Cdot_Crand: gﬁ _l 4 :lﬁgﬁ_g—i_(l_ﬁ)gﬁ—i_l
1-¢% fl-g B 1-g¢-¢+M

and applying L’Hopital’s rule twice we find that
i P g+ A= B %7 14 (1 B)(1 + B)g”
=1 1—q—¢®+¢%t =1 —1-B¢ 1+ (B+1)¢?
B(B—1)+(1-5%)q

=TT A T (BT Dy
_1-8
=5 -V

Next, we look at the benefit of monitoring (excluding its cost). First, we compute the benefit of a

deterministic policy. The benefit of the deterministic policy, B(‘}et, solves the system of equations
T
Bet — / e "tu(xl)dt + e T (2L B + (1 — zk)BdeY)
0
.
Bet — / e "u(z)dt + e (eH B+ (1 — 2 BdeY).
0

Solving this system we get that the payoff is given by

BTl el e ulef!) — u(ab )
L l—e7 1—e 7 (zH —2k) l—e7

Bt _ o € Mu@@Ndt e —af) [T e u(@f!) — u(zf))dt
" 1—e7 1—e " (zl — 2L) 1—e7 ’

and taking the limit when 7 — 0 (which is equivalent to taking the limit when & — \/(r + X)) we
get that

B (P00 0, 20 )
1

Bt ! <A541+—)\a)u(0) N r+Aa (1)>

10



On the other hand, the benefit of the random policy is
By = / e T (w(zf) + m* (ef BE* + (1 — o) B )dt
0

o
Bi"! = / eI ulafl) +m* (@l B + (1 - 2fH) B )dt,
0

where

o . * *Ad
Brand / e—(r-{—m )tu 2Edt + m prand + m
0 (@) L (r+m*)(r + A +m*)

( rand Brand)
T —|— m*
*

H

m*\a

rand rand
— B
r+)\+m*+(r+m*)(r+)\+m*) ( ")

H

o0
B}{and :/ 6_(T+m*)tu(ﬂj‘{{)dt+ . Brand + |:
0

From here we get

r+A+m*

>~ —(r+m*)t HY L
S [T et — u(bar

Brand Brand

So, replacing in the previous equations

ran T+m (r+m* m*Aa > *\ —(r4+m*
gt = T [ e et e [T e el — ek

We can also write

r+A+m*

Brand Brand —
(r+X)(r+m*

o
) /0 (r + m*)e= T (u(eH) — u(aF))dt
From here we get that when m* — oo the benefit converges to

1 /r+X1-a) Aa
rand -
BL — r < . b\ U(O) + U(l)) s

and

1
r+ A

B?nd . Bzand N

(u(1) = u(0))

SO

1 /A1 —a) T+ Aa
rand -
Bii r( T+ A u(0) + r+)\u(1)>

Comparing the limit of the deterministic and random policy we verify that both yield the same
benefit in the limit of C'9°t — C™7d i strictly positive, which means that the random policy domi-

nates.

11



Optimality of random monitoring following 61, , = H for large a: First, we find an upper

bound for payoff of following a deterministic policy

gget (U) = / e "y (a:f) dt+ e "T[UL — c+aAU + (6 —a) e—ATAU]
0

1
< @(1 e e (U — )
1 in in
< —ur )(1 —e )+ e (Un —c¢)

1 : .
- UT)(l —q )+ ¢ (Un —¢)

Next, we find a lower bound for the payoff of following a random policy

gfand (U) = /000 e~ (rFmt [U (xf> +m*M (U, wf)] dt

> / T emlrmrgy [w(@) +m*(@aUy + (1 — a) Ur, — c)]

0
~u(a) N m*(aUg + (1 —a) UL —¢)
r4+m* r+m*

Finally, we show that if @ is large enough, then the upper bound for ggot (U) is below the lower
bound for gfand. This requires that for any U we have

u(l) r r u(a_) m*(a_UH + (1 — a_) UL)
1 —qrtx) + gr+tx 1/ — < =+
r ( —Q+) —Q+( H c)_r—l—m* r—+m*

Following the proof in Lemma we let 3 = 75 so we can write

_ * (= - ~ B _
u(a) L m (@Up+(1—-a)Ur) _ U(Ta)(l—gﬁ)+u(&) <g 1 N 1 )

r+m* r+m* r r+m*
+¢%@Ug + (1 —a)Ur, —c)

+ <T_Tm* —qﬁ> (@Ug+ (1—a)Ur —¢)

Letting AU = Uy — Up, we write our required inequality as

(@_M>(1_q6)§@<qﬁ_ m”* >+< m**_q6>(UH_C)_TT;*(1—a)AU,

r r = r = r+m*

and after replacing m* we reduce it to

(ﬁ - @> (1-a)< (ﬁ +C_UH> <gﬁ_ B(1 —gg)+g> - %((tgﬁi

12



Clearly, it must be the case that @ > Upg, which means that
1 _
lim <M_@> (1—q5):0
a—1 T r -
<|—4+c-U ¢ - ————
( r T)\E T Ba-g+

q
:iﬂ{<@+0_UH> <gﬁ_ B(1 —gg>+g> - %:Z;Ajg}

and so there is € > 0 such that for all @ € (1 — ¢,1) we have that G4 (U) < G% ., (U)

Optimality of random monitoring following 67, , = L for small a: The proof follows a

similar argument as the one for large a. The payoff of the deterministic policy satisfies the inequality

Gier (U) < / e (@) dt + e "T[UL — ¢ +aAU + (6 —a@) e AU
0

= (1—e")+e""[UL — c+aAU [1 — e_’\T]]

Replacing 7yinq and taking the limit when a goes to zero we find

u(0)

(1 _ e—?“‘rbind) 4 e Tbind [jm [UL _ c]

: 6
%li)% gdot (U) < a—0

Similarly, the payoff of the random policy satisfies

Glana (U) = /000 e (rtmoi [u (:Ef) +m* M (U, mf)] dt

= = —l—lm* /OOO (r+m*) e~ (rtmt [u (wf) +m*M (U, xf)} dt

A * A *
- [u (r-i-[;n-i-)\) + r+m+>\m U +m*(1 = 285)Ur — m*]
r 4+ m* ’

and so the limit when a goes to zero is

u(O) +m* limg_0 (Ur — ¢)

r -+ m*

In the limit, it must be the case that % ( ) > limg0 (U, — ¢): If fact

lim Uy < lim E {/ e " (0;) dt|fy = L
a—0 a—0 0

13



and by dominated convergence

lim F [/ e (6y) dt|L] = / e " lim F [u(6;) |0 = L] dt
0 0 a—0

a—0

From Lemma [C.] we have that e="bind > %7 and so it follows that

lim G, (U) — lim G, (U) > 0.

This means that there is € > 0 such that the random policy dominates the deterministic policy for

any a € (0,€)

Optimality of monitoring at constant rate m* when A — oco. We verify that when A — oo,

the optimal policy is full random monitoring. With full random monitoring, we have that

Ug = /OOO e~ (r+m)r <u(a:2) +m* <UL +2%(Ug — Up) — c>) dr

m* m*

- Uy +a(Uy —UL) —¢) 4 —
o UpalUn =U) =)+ ey

+ / e~ (rtmITy, <9€_>\T +a(l — e_’\T)> dr.
0

(0 —a)(Uny —UL)

From here we get that

- — m* - * —(r+m*)r —AT (1 _ ,—AT . ~(1 _ ,—AT
U —Up 7r+m*+)\(UH UL)+/O e [u(e +a(l—e )) u(a(l e ))]dr
Substituting

=+ N

and solving for Ug — U, we get

U — UL = Tlg 000 e (rm)T [u (e_)‘T +a(l — e_’\T)) —u (d(l - e_)‘T))] dr

From here we get that limy_,o.(Ug — Ur) = 0 and limy_,o,o m*(Ug — Ur) = 0. We also have that

r+m*

rrme O Un = Un)

r(Up —c¢)=am*(Ug —UL) — (r + m*)c+

—I—/ (r 4+ m*)e” Ty (20)dr
0

k
—A—00,c—0, \c<o0=— u(xg) -

14



where ¢y = limy_,o0 0 Ac < 00. Having solved for the limits of Uy — Uy, and Uy, — ¢, the next step

is to verify that in the limit
ho(0) < [ e ha(r)dr,
0

which, by Proposition 2, would provide a verification that constant monitoring at rate m™* is optimal.
Substituting the definition of hg and p = r + A + m* we get that

ha(0) — /0 " e ho(r)dr = u(al) - <1 + M) /0 eIy (094

r—l—)\é
Al —q)

7‘+)\§ T(UL—F@(UH—UL)—C)

Taking the limit we get

lim <h9(0) - / pe_’”hg(T)d7'> =—c\ <0.
0

A—00,c—0,c)<00

C.2 Proof of Proposition

Proof. For the first part, notice that the existence of & follows directly from Proposition Zal Next,
let’s define

fOF e AN AT +e e

Hi (7)) = ~
(T) 1—eTT
~ N _6(7“")‘)7: oo * _s ~
Jo €S dT + e <117_qg> [ e rtmIE=T) % dr + 6(F)e
Hrand A\ = -
) 1—6(7)
We have that
et — "¢
cT (1 _ e—rr)2 <0
(%)
Hrz}nd — 0
I K

which means that 7 is increasing in ¢, and 7* is decreasing in ¢ and p* is increasing in c.

Next, let’s consider the comparative statics with respect to k. First, notice that Hdet (T,c) is
independent of k£ and that the cost of effort becomes relevant only once the incentive compatibility
constraint is binding. Next, we consider the maximization of H™"4(#). Because k enters into the
maximization problem only through ¢ it is enough to show that 7 is decreasing in ¢q. After some

lengthy computations, we have that H; = 0 if and only if

G(7,q) = (r+AM2—q)) (2EA(r + 2X) — 1)+2gr(r+20)e N —(r4+2)0) (r+Ag)e A 420 2ge= VT =
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Let z = e~ (207 and write

9(z,q) = g(—log(2)/(r +2X),q) = r(r + A2 — q)) (2eA(r +2)) — 1)
+2gr(r + 20) 275 — (1 + 20)(r + Ag)2 77 + 232gz. (C.1)

bind

The incentive compatibility constraint requires that 7 < 779 which means that

42X\
z2>qrth.

It follows from here that

9-(2,q) = 2g7‘)\z_% —2X\(r + )\g)z_ﬁ +2X%¢g
<2\ (r+2g) (1-2777) <0,

so we only need to verify that g,(z,q) > 0. Notice that g(z,q) is linear in ¢, so we can write
9(2,9) = go(2) +91(2)q. Hence, if_g(é,g) = 0, then it must be the case that g1(£)q = —go(£), which
means that it is enough to show that gg(2) < 0 evaluated at the solution. Substituting in equation
(C1) we have that

go(2) = r(r + 2)\) [25A(r 2N - (1 + z%ﬂ <0,

where the last inequality follows from the condition in the Proposition

1

S B
“= 9N+ 2N

Finally, we verify that the optimal policy in the i.i.d. limit is random. From the first order condition

for 7, the optimal policy is random if g(1,¢) > 0, which reduces to

1—g¢g

R
AC_T—F)\(Q—Q)

When this condition holds, the optimal policy is monitoring with a constant hazard rate starting
at time zero. The left-hand side converges to zero as A — 00, so indeed, random monitoring is

optimal. O

16



D Proofs of Analysis Using Optimal Control

D.1 Existence: Proof of Lemma

Proof. The first step in the proof is to show that the operator G/ has a unique fixed point. Let’s
denote the vector of expected payoffs by U = (U, Ug). We have that U™ = (u(1)—ka)/r < oo is
AT

=4
provides a lower bound UM™ > —occ. We consider the rectangle R = [Un, U™maX] x [Ugin, max],
Let 4Y be the Bellman operator with the extra constraint that E(e™"") = Joo et dE(t) < e
For any bounded functions f,g we have that |sup f — supg| < sup|f — ¢/, and so because the
function ¢, = (41, %) is bounded in R, we have that

an upper bound for the principal payoff. The monitoring policy m; = 0, and 7 solving e~

19.U° = GU| < e7"llU° — U,

Hence, by the Contraction Mapping Theorem there is a unique fixed-point 4.U. = U.. For any
sequence ¢, | 0 we have that the sequence U, is increasing and bounded above by U™**: Accord-
ingly, U, converges to some limit U, and because ¥, is lower semicontinuous as a function of e
(Aliprantis and Border, 2006, Lemma 17.29) we also have that

lim%,, U, >9U.
€40

On the other hand, ¥, is increasing in U, decreasing in € and U, is an increasing sequence so

lim%, U, <%9U.
€0

Accordingly, lim,, |0 %, Ue, = 9U and we conclude that

U=I1limU, =1lm%, U, =9U.
€xd0 €xd0

The next step is to show that a solution to the maximization problem exists. To prove existence,
we consider the space of probability measures over R, U{oo}, which we denote by P, endowed with
the weak* topology. The extended reals R} U {oco} are a metrizable compact space so by Theorem
15.11 in|Aliprantis and Border (2006) the space P is compact in the weak* topology. The incentive
compatibility constraint can be written [ e~ (TN dF(s) > q(1—-F(r—)) for all 7 € Ry U {oo}
which means that the set of incentive compatible monitoring policies is a closed subset of P, and
so a compact set. Finally, the objective function is a bounded linear functional on C' (R4 U {oo}) so
it is continuous in the weak* topology, and thus is maximized by some incentive compatible policy
. O
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D.2 Proof of Theorem [I] Using Optimal Control
Proof of Lemma 8

Proof. At any point of continuity we have that
dv; = —Avdr — do... (D.1)

We also have the optimality conditions

S(r) <0 (D.2a)

M, = /OT 1¢s(uy=0ydMy. (D.2b)
Condition ([D.2al) corresponds to

S(r) = M(U, %) = Uy — (1 = ¢-)vr < 0.

Differentiation S(7) we find

dS(r) =i (Uy — Up)dr — dU; + v-dg; — (1 — ¢-)dv,

T

=i (Uy — Up)dr — (rUT - u(:ng)) dr — <UT - M(U,xf)) dM¢

T

+ vy ((r+ Ngrdt — (1 — ¢)dME(7)) + (1 — q7) (A\vpdT + dP;)
- (j;i(UH —Up) + u(@®) — Uy + vs(rgr + )\)) dt + (1 — g, )d®, + S(r)dMe

The optimality condition (D.2bl) implies that S(7)dM,; = 0. Thus we can write the evolution of
S(7) as
ds(r) = (xﬁ(UH —UL) +u(@®) = Uy + v (rg + )\)) dt + (1 — ¢,)d,. (D.3)

Whenever ¢, > g we have that d®; = 0, which means that S(7) is absolutely continuous in any
interval (7/,7") with ¢, > ¢ (notice that ¢, is continuous between jumps so wlog we can assume
that if gz > ¢ at some time 7 between jumps then there is neighborhood of 7 such that ¢, > q) .
Note as well that S(7)dME = 0 implies that we can write

AU, = (rUT - u(:ci)) dr — (1 — ¢-)vpd M (D.4)
Let S(7) denote the drift of S(7), which is given by
S(1) = 29Uy — Up) + u(@?) — rUr + vy (rgr + N). (D.5)
Differentiating S(7) we find
d$(r) = (fc'f_(UH —UL) + u’(xﬁ)j;i) dr — rdU; + (rg- + Ndvs + rv,dg, (D.6)

18



Replacing equations (D.I)) and (D.4)), and the equation for d¢, in (D.6) we find that
dS(r) = <r‘1j§2(UH —Up) +r % (29)i? — rU, +u(2?) + 7712, — )\2)V7-) dr. (D.7)

The support of M¢is A = {7 : S(r) = 0}, which correspond to the set of maximizers of S(r).
Accordingly, for any time 7 € A, we have that S(7) = S(7) = 0 and S(7) < 0. Suppose that there
is 7 such that S(r) = 0, S(7) = 0 and S(7) = 0, and replacing S(7) = 0 and i? = —\&? in (D7),
then we get that it must be the case that

30
v =55 (W60 = 0+ N - 01) (D)
Let’s define
i@
TEN N () = (4 DU = Ur))

Differentiating z, we get
do = (T (@) — (r + N (Un — U1)) + G
i A(r+A) T e A(r
x?— (x?-)z i
= <:1';_92T + YZEY) )\)u (xT)> dr

= (—T/\ZT + %u"(wﬁ)) dr

On the other hand, whenever ¢, > g we have that d®, =0 so

dv, = — A dr.
Accordingly
-.0\2
d(vr — z;) = =Avr — z;)d7r — ﬁu”(xe)dﬂ
A(r+A) T

so for any 7 > T

Vr — 27 = /T e MT=s) 7@?)2 u”(2%)ds > 0
R A(r+X) s '

This means that there is at most one 7 € A satisfying equation (D.8]), which means that there is
at most one 7 € A such that S(7) = 0, and any other 7 € A satisfies S(7) < 0. This means that
all, but at most one, 7 € A, are isolated points. And, by Theorem 7.14.23 in (Bogachev, 2007),
the only atomless measure in A is the trivial zero measure, which means that M¢ — M¢, = 0 for all
Telr, ™)

O
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Proof of Lemma

Proof. The first step is to verify that S(7) is continuous at any atom 7. We have that

S(Tk_) = M(U ) ) — Un— — VTk_(l - q‘%—)

9 Tk
Using the fact that v, satisfies
-
V= Vg — / Avgds — O, (D.9)
0

we find that

S(Tk) = M(U,l‘?_k) - UTk - (VTk— - A(I)Tk)(l - qu)
d
_ AN <M(U,xfk) —Upe = (Urpe — AD, (1 — qu_))
d
= 2 (S(1—) + A% (1 - 7))
= eAMgkACI)Tk(l —qr,),
where we have used that S(7;) = 0 at any atom 7. Because S(7;) < 0 and @, is non-decreasing,

we can conclude that A®, = 0, which means that v, is continuous at 7. Hence, at any jump

atom, the following necessary condition must hold
rM(U, :Efk) = u(:nfk) + :i:fk(UH —UL)+ (r+ Ny, — (D.10)

The objective now is to show that equation (D.I10) cannot be satisfied at more than one point.
Let’s define

G(1) = u(a?) + iUy — UL) + (r + Nvy — rM(U, 2%)
We have from equation (D.3)) that
dS(r) = S(r)dr + (1 — ¢,)d®,,
where we notice that

S(1) =u(x?) + iUy — UL) — rUr 4+ ve(rgr + X) = 7S(7) + G(7). (D.11)

Accordingly, for any atom 7y, the following conditions must be satisfied

As A®, =0, then both G(7) and S(7) are continuous at the atom 74, and G(7) = S(73,) = 0,

which means that S(7;) = 0. Moreover, because 74 is a local maximum of S(7), and S(7) is
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differentiable at 7y, it follows that that S(7,—) < 0. Equation (D.11]) then implies that G(rx—) < 0.
Differentiating G(7), we find that

dG(r) = (u/(xﬁ);t?; — (r+ N @ (U - UL) + )\1/7—)) dr — (r + \)d®,
Let’s J(7) be given by

J(r) =/ (22)i? — (r + Nl Uy — Up) — (r + M) Avy. (D.12)

)& T

Notice that whenever the IC constraint is slack we have G(7) = J(7), so in particular G(rp—) =

J(1,—) for any atom 7. Next, if we differentiate equation (D.12]) we get

dJ(r) = (u"(;pﬁ)(iﬁ)? (@23 — (r+ N (=AU — UL)) dr — A(r + \dvs
- (u"(a:f)(a':f)Q — 2 (20)il + (r + M)A (U — UL)) A7+ A + N wpdr + do,)

= (w" (@))% = M/ (20)i + (r + NA@LUn = Up) + Avy) ) dr + A(r + A)d@s,
which can be rewritten as

dJ(r) = (M(ﬂ’)@aﬁﬁ) dr — AJ(7)d7 + A(r + \)d®,.

T

Thus, for any 7 € g, Tx11) we have

Tk+1
J(1) = — / A=) ((j:z)zu"(ajz)ds + A(r + )\)dCI)S) + A7) J (741 —)

Th+1
= _/ M=) ((:te)zu"(:nz)ds + A(r + )\)dfbs) + A =G (1 —) <0,

S

where we have used the fact that J(7p11—) = G(7k+1—) < 0. But then,
dG(r) = J(1)dr — (r + \)d®, <0

for all 7 € (7, Tk+1) which contradicts the requirement that G(mx41—) = 0.

Proof of Theorem ]

Proof. Lemma [§ implies that, in the absence of an atom, ¢, is increasing if ¢, > ¢ because ¢,
increases whenever dM<* = 0. Hence, because there is at most one atom, this means that either
there is monitoring with probability one at the atom, or the incentive compatibility constraint is
binding thereafter. If this were not the case, ¢, would eventually reach one, which would require
a second atom and contradict lemma [0l Thus lemmas [§ and @ imply that the optimal monitoring

policy takes the following form:
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1. There is 7 such that for any 7 € [0,7) we have ¢, = q.
2. There is 7 such that for any 7 € [7,7) there is no monitoring and ¢, > q.

3. There is an atom at time 7. If the probability of monitoring at the atom is less than one,

then there is a constant rate of monitoring after 7.

Thus, the problem of solving for the optimal policy is reduced to finding 7 and 7. The last step of
the proof shows that 7 is either zero or infinity. The intuition is the following. Analogous to standard
contracting models, equation (D.I]) works as a promise-keeping constraint. Equation (D.2)) implies
that the largest possible atom consistent with ¢, is (¢-——¢)/(1—¢), which corresponds to the atom
in Theorem Il On the other hand, once the incentive compatibility constraint is binding, equation
(D.T)) implies that the largest monitoring rate consistent with the promise-keeping and the incentive
compatibility constraint is m*. Thus, because the benefit of monitoring is increasing over time,
the optimal policy requires to perform as much monitoring as possible once it becomes profitable
to do so. Hence, the support of the monitoring distribution is either a singleton (deterministic
monitoring) or an interval [T, co].

First, notice that any atom has to be of size

1—
AMﬁ:log< g),
1—q,—

and that the continuation payoff at the atom date satisfies

o 1—gqr- 4r——4q 0
o (1) ()

Whenever the IC constraint is binding on an interval of time, the monitoring rate is given by

q
m=(r+\)-——.
1 - _—
The payoff at time zero of a policy with monitoring at a rate m in [0,7) and an atom at time
T=T4+4d1is

T 746 .
U(T,0) = / e~ (rtm)r (u(xf_) + mM(U,xf)) dr + / ey (20)dr
0 7

~ ~ 1-— FLo— T+o— T
e (2 o (= Mstio] 029

where

Usis = / e~ (rtm)(r=7-9) (u(xf.) + mM(U,:pﬁ)) dr
715

Suppose that the IC constraint is binding at time 0, that is assume that o = ¢, then we have that

G5 = TN,
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which means that § must satisfy

Replacing ¢z, in (D.I3]) we get

T+0

U(T,0) = / e~ (rtm)T <u(xf.) + mM(U,xf)) dr +/ ey (2f)dr
0 7

) 3 1— e(r+)\)5q e(r+)\)5 -1
+ e—r(T+5)—m7’ [(17— Uq':+5 —|— ?q QM(U, x?':_l_&)

= (D.14)

Next, we show that for any given § we have that 0U(7,9)/07 = 0 = 0?U(7,5)/07* > 0. This
means that the maximum cannot have an interior value for 7.

Differentiating (D.14]) we get

S Ur0) = “”W(<%+mMahv erirH-m mﬂﬁrw*ﬁmwu%

_m/ e T m'r )dT (7,_’_m) —r(74+6)—

(T2 (r+A)5 _
—r(T —mT q e 1 .
+eT K 1—q_)¥w”+<_?§_>@%ﬂh_%)

0
EU%M = —u(2l, ;) = mM(U, a2, 5) + (r + m)Usryss

where

23



Rearranging terms we get

0

—U(7,8) = ¢ <’“+mf[mM(Ux) eu(zl, )

—m/ e )dT—(T+M)<e

A _ 1o

= )Mt

A

a (%zq) < (2745 +mM(U7$r+6)> + <Te_q—f5> gj?6;+5(UH -Ur)

= 6_(T+m)7- |:mM(U, .Z'?:) + (e)\(s — 6—7’6) <1;zq> U(IL'?:_H;)

_m/ P )dr — (r + m)(e )\é_e—r6)<

_ (ﬂ) mM(ijﬂ_&) + (6)\6 _ e—r&) (1

=

=

1—g¢g

_ —(r+m)7 M(U 9) + (e)\é — 6_T6) ( 0 )
=e m R W A
F46 Ad —rd
—r(T—7 e —e
— /7: (& ( )U(.Z'?_)dT - (T + m)(H_i/\)M(U, .Z'?:_H;)

e—r5 —eMyg (e)\é _ e—r(S)
- 2 0 Fo " 40 _
( =g MU, 2745) + —— 5 F545(Un — UL)

So, finally, we can write

0

DY R )
T U(F,8) = e~ Ty, [M(U,:c’;) Ll =)

r+ A u(:nng(;)

97

T Ry 0 SV SR, S 9 (e —e)
_ i e U(.’L'T)dT — ’r’—|——)\e + ’r’—|——)\e M(U,.Z';._H;) + H_i)\xf'-ﬂs(UH — UL)
Let’s define
_ (e>‘5 . e—ré)
G(7) = M(U,2%) + H_i)\u(iﬂgﬁ)
746 Y] —rd
_ N N S A VRN S, 6 (e —e™) g _
L e w(z?)dr <r+)\e +T+)\e )M(U,a:TJr(;)—i- Y 2, 5(Ug —UpL)

So
—U(7,0) = e "M mG(F)

Clearly, the first order condition is satisfied only if G(7) = 0. Moreover, G(7) = 0 implies that
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6%252/{(%, §) = G'(7). Differentiating G(7) we get

(e)‘é o e—r&)

G'(7) = it (Un = Un) + ~——

0 (¥ —e ), 0 5 0 0
=a:(Un —UL) + I W (T2 4s)8745 — € ulazis) +u(a?)
T+ pY) —rd
—r(r—7 0 Y A5\ e (e’ —e™)
0 A0 (e¥ —e ™), 5. (0
= (88 = M) (Un = Un) + =50l (e g)idys — e ulalys) +u(ed)

we conclude that

(e)\é _ e—r&) T4+6 ~
G'(7) = Hi)\u/(fﬁgw)ig—w — e u(zl ) +u(al) - 7”/ e "y (zf)dr  (D.15)

Using integration by parts we find that
P : T+ 5
—r/ e u(af)dr = e u(xl,s) —u(zl) — / e (29)ildr
T

Replacing in equation (D.13]) we arrive to

I~ (e —e™) o .0 8, 0 0 8, 0 0 T+ —r(r—7), 1070
G(7) = @)l — e ulals) +ueh) + e ulals) —u@d) = [ eI )it
(M — 7o) 746 i
= WU,@?M)HQ’?M —/ e T () #dr (D.16)

Replacing 2¢ = \(@ — 0)e™7 in equation (D.16) we get

(1 _ e—(r+)\)5)

G'(7) = MNa—0)e™™ [ Y

T4+0 -
u' (20 5) — / 6_(T+)‘)(T_T)u/($g)d7'] (D.17)
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On the one hand, if # = 0, then we have that u/(xf~_+5) > u/(x%) for all 74§ > 7, which means that

[(1 _ o~ ()5 746 )
L v - [ e—“+”“-”u%x%dfl

1 — e (r+X)s T
(—)u’(m";+5) —u'(2%45) /

T+0 _
e—(r+)\)(T—T)d7_
r+ A =

1 — e (rtA)d T
(T_I_—A)U/("Egﬂs) - u/($2+5)/%

T+0 _
e~ N g

On the other hand, if # = 1, then we have that u/(2%, ;) < v/(2%) for all ¥+ § > 7, which means

that

(1 _ e—(r—i—)\)é)

7o i
T+ A ' (ad5) — / 6_(T+A)(T_T)u/(xf)d7']
_ —(r+X)d T4 B
S+ e—“+”“—”u%x%dT]
r 7

1 — ()8 745
Sl ) [

— j e—(r—l—)\)(ﬂ-—f—) dZT]

This means that, for any 6 > 0, we have %Z/{ (7,6) = 0 implies g—;u (7,9) > 0 which means that

the optimal monitoring policy can not have an interior 7, that is 7* € {0, co}.

O
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E Model with Exogenous News

In this appendix, we consider the model with exogenous news. Thus far, we have ignored alter-
native sources of information, besides monitoring. In this section, we explore the effect of having
exogenous news on the optimal monitoring policy. We show that exogenous news, not only crowd-
out monitoring but by altering the severity of the moral hazard issue across states, may modify the
monitoring policy in a significant way.

Exogenous news such as media articles, customer reviews, and academic research provide infor-
mation to the market that may complement or substitute the principal’s own monitoring efforts. To
provide some insights about the interaction between monitoring and news, we consider the presence
of an exogenous news process that may reveal current quality to the market. More specifically, we
consider the case in which the quality of the product is revealed to the market at a Poisson arrival
rate.

Assume there are two Poisson processes (N/);>0 and (Nf?);>o. The process N/ is a bad news
process with mean arrival rate 6; = u1g,—r}, and NH is a good news process with mean arrival
rate pplig,—pry. When pp # ppg we say that news are asymmetric, in which case, the absence of
news is informative about the firm quality. On the other hand, if p;, = pg the lack of news arrival
is uninformative. We say that we are in the bad news case when pur > pg and in the good news

case if pug > pr. In the absence of exogenous news and monitoring, beliefs evolve according to
Ty = May — x¢) — (pg — pr)ze(1 — xt)'

The second term cancels if g = py, and the dynamics of beliefs (in the absence of any moni-
toring by the principal and arrival of exogenous news) is the same as in the case without news. On
the other hand, if uy # g, the exogenous news introduces a new term in the drift of reputation.
That term is positive in the bad news case and negative in the good news case. The market learns
from the absence of news since no news is informative when the news processes have asymmetric
arrival rates.

Let’s first consider the case with symmetric news arrival, i.e. ur = ug = . From the firm’s
point of view, it does not matter if the state is learned due to monitoring or exogenous news. The
only difference is that now, there is an extra arrival rate that reveals the state. If we denote the
date at which quality is revealed, either by monitoring or exogenous news, by T}, then we can still

write the incentive compatibility constraint as
E e+ (Tn—t) |ft} > q.
This means that we can still use ¢, as our main state variable, and the dynamics of ¢, are given by
dgr = (r + A)g-dr — (1 — ¢-)(dM7 + pdt). (E.1)

Notice that the only difference between equations (D.1]) and (E.I) is that the monitoring rate dM¢
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is incremented by pdr due to the exogenous news. Similarly, because the problem of the principal
is the same going forward no matter if quality was learned due to monitoring or exogenous news, we
can still write the problem recursively based on the time elapsed since the last time the firm type
was observed (either by monitoring or news) and the type observed at that time. The principal’s

continuation value now evolves according to
U, = (rU e )) dr + (UT — M(U, xﬁ)) AMS + (UT Uy - (1—z )UL> dr.  (E2)

Hence, the Principal’s problem has the same structure as before, with the exception that now
the principal gets some monitoring with intensity u for free. When news arrivals are symmetric,
exogenous news is a perfect substitute for monitoring. Lemmas 8 and [44] still apply, and the
monitoring rate is positive only if the incentive compatibility constraint is binding, in which case

dgr = 0 so the monitoring rate is

Clearly, the monitoring rate to keep the incentive constraint binding needs to be positive only if
u is low enough. Otherwise, exogenous news suffices for incentive purposes. In this latter case,
exogenous news are enough to discipline the firm, and the only purpose of monitoring is to learn
the sate. Depending on the magnitude of u, the optimal monitoring policy may entail some or no

random monitoring. We have the following proposition, which is a direct implication of Proposition

!

Proposition E.1. Suppose that pur, = pg. If (r + )\)%q > i then the optimal monitoring policy is

the one characterized in Propositions [3 and [ with a Poisson monitoring rate.

m* —(r—l-)\)l%qq—,u

On the other hand, if (r + )\)Lq 1, then the optimal monitoring policy is deterministic.

Proof. Letting M¢ = M¢ + pr and @(z) = u(z) + pc, we can write

dQT = (T + )\)quT - (1 - QT)de
AU, = (rU: —a(a)) dr + (U; = M(U,2%) ) diZz,

so the optimal control problem follows the same structure as before with two diferences: (1) now
then (1) and (2) are not binding. On the other hand, if (r + )\) ; < p then ¢; > g. Hence the

incentive compatibility constraint is slack at all times, so the solutlon to the Principal problem

dM¢ must be greater or equal than pdr, and (2) ¢, is bounded below by

corresponds to the one in Section [Al which means that monitoring is deterministic. O
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E.1 Asymmetric News Intensity

The qualitative results are different if uy # pr. In this case, the presence of news changes the
dynamics of incentives: the monitoring rate changes over time and is dependent on the outcome
of the outcome in the last review. We do not solve the full problem here and instead focus on the
case in which the principal’s preferences are linear. Based on our previous analysis of the linear,
it is natural to conjecture that the optimal policy has (1) no atoms and that (2) the monitoring
rate is positive only if the incentive compatibility constraint is binding. We can use the maximum
principle to verify if our conjectured policy is optimal. We relegate a detailed discussion of the
solution to the appendix.

We focus on the simplest case with parameters such that the optimal policy has m, > 0 for
all 7 > 0; this case illustrates the effect of introducing exogenous news on the optimal monitoring

policy at the lowest cost of technical complications

E.2 Incentive Compatibility and the Principal’s Problem with News

In the presence of exogenous news, we cannot use a single state variable to characterize incentive
compatibility. With persistent state variables, we need additional state variables to keep track of
the continuation value across states. As in [Fernandes and Phelan (2000) we use the continuation
value conditional on the firm’s private information (i.e., the firm quality).

Let I1% be the firm’s continuation value conditional on being type 6, and define D, = ¥ —TIZ.

The continuation value must satisfy the Bellman equations

rIIH = max {xT — ka; — A1 —a;)Dr— + (pum +m,)(II(H) — T + Hf}

ac [O,ﬁ,]

rIIE = max {xT — kar +Aa; D + (ug, +m,)(TI(L) — TIE) + Hf} ,

ac [O,ﬁ,]

where we use the fact that if a; = a for any ¢t > T, then, given 01, = 6, the continuation payoff is
19 = T1(0) (recall that I1(#) is given by (I))). From here it follows that full effort a, = @ is incentive
compatible if and only if@
D>t
A

The evolution of D, can be derived (analogously to what we have done before) to be
Dy = (r+X+m;)D; — pg(I(H) — TH) 4 pup (L) — TIE) — m, A.

with a boundary condition D = A =11(H) — II(L) = 1/(r + \).

3Such policy is optimal when the rates of exogenous news arrivals are low. When those rates are large, after some
histories the principal will not monitor at all since the exogenous news would be sufficient to provide incentives, as in
Board and Meyer-ter-Vehn (2013). That is, our analysis focuses on the cases where news are not informative enough,
and so some amount of monitoring is needed at all times to solve the agency problem.

“This incentive compatibility is analogous to that in [Board and Meyer-ter-Vehrl (2013) except that there the only
source of information is the exogenous news process and we allow for additional information from costly inspections.
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From the principal’s viewpoint, it does not matter whether he learns the state due to monitoring
or exogenous news. In either case, the problem facing the principal is the same going forward.
Hence, we can write the problem recursively using as state variables both the time elapsed since
the last time the firm type was observed (either by monitoring or news), and the type observed at

that time. The optimal control problem (ignoring jumps in the monitoring distribution) becomes

“%(U) = sup / e T M- (xf. + puprlUn + pp(1 — 22U + mT./\/l(U,:ET)> dr
0

7",m.,—,l'la‘9

+ e T M M(U, 25)
subject to

17 = (r + pg +m)H — 2 + ka + A1 — a)(I17 —T15) — (ugg +m,)TI(H), T = I1(H)
I = (r 4 pp + m )L — 2 + ka — Aa(IT —105) — (up + m (L), TIE = TI(L)
119 = 11(6)

<1 — 1k, vr e o, 7

o >l
(VAN

M.

Note that in the previous formulation, the continuation payoff given the counterfactual type
-0 (if § = H then -0 = L and vice versa), which we denote by II;?, is not given by I1(—6). The
solution to this problem critically depends on the intensity of bad versus good news arrivals. We
first consider the symmetric case.

We consider the asymmetric case, pg # pr, so that the intensity of news arrival depends on
the firm’s quality. Such asymmetry seems natural: in some industries and under some market
conditions, good news tend to be revealed faster than bad news, among other things, because firms
themselves may delay the release of bad news. Sometimes, bad news tend to be revealed faster
than good news, perhaps because news agencies and TV broadcasts face stronger demand for bad
news stories.

The main question we address here is how monitoring rates are affected by reputation when
exogenous news are asymmetric. We do not solve the full problem here, and instead we focus on the
case in which the principal’s preferences are linear. Based on our previous analysis, it is natural to
conjecture that the optimal policy has 1) no atoms in the distribution of monitoring (in particular,
T = 00), and 2) the monitoring rate is positive (i.e., m,; > 0) only if the incentive compatibility
constraint is binding, that is if IIZ —IIZ = k/\. We can use the maximum principle to verify if our
conjectured policy is optimal. We relegate a detailed discussion of the optimality conditions to the
appendix.

Given this monitoring policy, we can follow the same steps as before, and derive the monitoring
rate using the incentive compatibility constraint: (II7 — I1F) = 0 and II¥ — IIL = k/A. These

conditions are necessary for the incentive compatibility constraints to bind at all times. They
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imply:
m,; = a+ BIE, (E.3)

where

(o NE/A + par (k)X = T(H)) + pTI(L)
A—k/A

BZIU’H_ML
A—k/\

The constant ( is positive in the good news case and negative otherwise so in the bad news case
the monitoring rate is positive only if IIZ < —a//3, and in the good news case, the monitoring rate
is positive only if [IX > —a/B. That is, with bad news, monitoring is needed only if the firm’s
continuation value is low, and with good news, monitoring is needed only if the firm’s continuation
value is high. The logic for these conditions follows the results in|Board and Meyer-ter-Vehn (2013):
With bad news, the incentives for effort increase in reputation, while with good news the incentives
for effort decrease in reputation.

We focus on the simplest case with parameters such that the optimal policy has m, > 0 for
all 7 > 0; this case illustrates the effect of introducing exogenous news on the optimal monitoring
policy at the lowest cost of technical complications Using the relation I¥ = TIL + D, = X +k/A

and the monitoring rate (E.3]) we write the evolution of the low quality firm continuation value as
L = —(up, + @)T(L) + (r + i, + @ — BI(L)IE + B2 — o (B.4)

If g = L then the initial condition is I} = II(L). If #y = H (and the incentive compatibility is
binding) the initial condition is I} = II(H) — k/A\% We can analyze the evolution of monitoring
by studying the phase diagram in the space (z,IIL) in Figure B

Using the ODE for T1£ in equation (E.4]) we get a quadratic equation for the steady state:
0=—(ur +a)I(L) + (r + pg, + o — BI(L))ITE + B(TH)? — 2. (E.5)

This quadratic equation has two solutions. We show that in the good news case only the largest
solution is consistent with a positive monitoring rate, while in the bad news only the smallest one
is consistent with a positive monitoring rate. So if the solution has positive monitoring rate at all
times, then the solution must correspond to the saddle point trajectory in the phase diagram in
Figure 2

5Such policy is optimal when the rates of exogenous news arrivals are low. When those rates are large, after some
histories the principal will not monitor at all since the exogenous news would be sufficient to provide incentives, as in
Board and Meyer-ter-Vehn (2013). That is, our analysis focuses on the cases where news are not informative enough,
and so some amount of monitoring is needed at all times to solve the agency problem.

SIf the IC constraint is not binding at time zero then the initial value must be computed indirectly.
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(L) TI(H) - k/A

TI(H) — k/

(a) Case with bad news (b) Case with good news

Figure 2: Phase diagram. The (z,,I1Z) system has two steady states. In each case, one of the
steady states is a saddle point. If the optimal solution is such that m, > 0 all 7 > 0, then the
optimal solution corresponds to the trajectory converging to the saddle point. In this case, the
analysis of the phase diagram reveals that the trajectory of IIX must be monotone between news
arrivals. This immediately implies that the evolution of monitoring between news is monotone as
well.

From inspection of the phase diagram, it is clear that ITZ is monotone: it starts decreasing after
good news and starts increasing after bad news. This implies the dynamics of optimal monitoring
that are described in Figure Bl In the bad news case, monitoring increases after (bad) news.
The opposite is optimal in the good news case. As previously mentioned, this is driven by the
dynamics of reputational incentives. In the bad news case, incentives weaken as reputation goes
down. As|Board and Meyer-ter-Vehn (2013) point out, a high reputation firm has more to lose from
a collapse in its reputation following a breakdown than a low reputation firm. Hence, inspections
are most needed for incentive purposes when reputation is low. In the good news case, incentives
decrease in reputation; a low reputation firm has more to gain from a breakthrough that boosts
its reputation than a high reputation firm. In the good news case, inspections are thus most
needed when reputation is high. Accordingly, monitoring complements exogenous news, being used
when exogenous news are ineffective at providing incentives. We still need to verify that: (1) the
optimal monitoring policy is optimal, and (2) show that the dynamics of the firm’s continuation
value satisfy the monotonicity properties in Figure 2l We consider the optimality conditions for

the optimal policy in Section and study the steady states of the firm’s continuation payoffs in
Section [E.4]
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E.3 Necessary Conditions with Asymmetric News

The Hamiltonian for the optimal control problem is

HOE T G vk vl e me, 7) = G((r + me)UL = 2 — puafUn — pr(1 — 2)Ur — me M(U, 27)
(T — T — kA + o2 ((r + pgr + m)TE — 2 + ka + A1 - a)(I - 1IF)
— (pr +m)I(H)) +vE((r+ pr +m )L — 2, + ka — Aa(I1F —11F)
— (pr +m-)II(L))

As before, we have that (;— = 1 and the evolution of the remaining co-state variables is The

evolution of the co-state variables is given by

v = —(ug + 21 —a)vl — ¢, + ravk
v = —(pr +2a)vf + ¢, + A1 —a)y.

The switching function S(7) is given by

S(r) = M(U,,) + v (I — 11(H)) 4+ vE (1L — 1I(L)) - U”.
We pin-down the boundary condition for the co-state variables v¢ by looking at the switching
function. The rate of monitoring is positive (and finite) at time zero only if S(0) = 0 which implies
that
0=M(U,0) — Uy + v (I — T1(H)) + v& (11 —TI(L)).

If the incentive compatibility constraint is binding at time zero, so Hé{ — Hg = k/A, then when

0y = L and mg > 0 the initial value of the co-state variable l/é{ is

The initial value of the co-state variable VOL is determined by the transversality condition lim,_, VTL =
vE . Tf the incentive compatibility constraint at time zero were slack (that is mg = 0) then the initial
value would be v4! = 0. The determination of v} is more complicated in this latter case as X can

jump at the junction time 7™ in which the IC constraint becomes binding. Similarly, if 6 = H then

(L
C_V0<7‘+/\ A

while 1/({{ is determined by the transversality condition lim,_ s, fo = ;Z . As for 6y = L, the same

we have that VOL is given by

qualification for the case in which the IC constraint is slack at time zero applies. In the same way

as we did in the case without news, we can use the condition that the switching function is constant
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on a singular arc, S. =0, to back out the value of the Lagrange multiplier v

e (M —TIE) — (I(H) — (L)) = (U — Up) — U2+ (~(ur + A1 — @)l + davk) (4 —TI(H)) + v/ 1Y
+ (= (ur + @)k + M1 — a)!)(TE — (L)) + vETTE

If the incentive compatibility constraint is binding, IIf —IIZ = &/, then we can write the Lagrange

multiplier as

Ur = o w (9 = UL) = U = (uapv o puaf) (15— TH(L))

1 k L H\YTL
7"—1—)\ X) (VT +V7_ )HT:| .

++ ((pg + A1 —a)v! — avk) <

A necessary condition for our conjectured monitoring policy m., to be optimal is that the
Lagrange multiplier ¢, is non-negative whenever the incentive compatibility constraint is binding.
The monitoring policy m. is positive if and only if this constraint is binding; hence, the condition
reduces to verify that ¢¥,m, > 0. Given the higher dimensionality of the state space, we can no
longer check this condition analytically. However, this condition can be easily verified numerically
after solving for the system of ODEs. The Hamiltonian in our problem is not concave, so traditional
theorems on the sufficiency of the maximum principle do not apply. However, our problem is a
special case of the generalized linear control processes considered by [Lansdownd (1970), for which
he proves the sufficiency of the maximum principle. The results in [Lansdowne (1970) do not
apply directly to our problem due to the presence of a state constraint; however, because the state
constraint in our problem is linear, his sufficiency result can be extended to our setting.

The dynamics of optimal monitoring are described in FigureBl In the bad news case, monitoring
increases after (bad) news. The opposite is optimal in the good news case. The dynamics of
monitoring are driven by the dynamics of reputational incentives. In the bad news case, incentives
weaken as reputation goes down. As|Board and Meyer-ter-Vehn (2013) point out, a high reputation
firm has more to lose from a collapse in its reputation following a breakdown than a low reputation
firm. Hence, inspections are most needed for incentive purposes when reputation is low. In the
good news case, incentives decrease in reputation; a low reputation firm has more to gain from
a breakthrough that boosts its reputation than a high reputation firm. In the good news case,
inspections are thus most needed when reputation is high. Accordingly, monitoring complements

exogenous news, being used when exogenous news are ineffective at providing incentives.

E.4 Monotonicity of Monitoring Policy with Asymmetric News

Proof. Looking at the phase diagram in Figure 2, we see that if the optimal solution is given by
the saddle path, then the trajectory towards the steady state is monotonic, which implies that m.

is decreasing in z,. Hence, we only need to rule out that in the optimal policy the continuation
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Figure 3: Response of monitoring rates to exogenous news in the bad news and good new cases. In
both pictures the starting belief is g = 1. The blue curves represent optimal monitoring intensity,
m, and the red curves the evolution of reputation, x,. In the bad news case (left panel) the rate
of monitoring increases after negative news (either from inspection or exogenous news). Moreover,
optimal monitoring intensity is decreasing in beliefs. The dynamics of monitoring are the opposite
in the good news case. Parameters: » = 0.1, k = 0.5, ¢ = 0.1, a = 0.5, A = 1. In the bad news case
we take py = 0, and pr, = 0.2, and in the good news case we take g = 0.2, and puy, =0

values converge to the stable steady state. We show this by verifying that the trajectory to the
stable steady state violates the non-negativity condition of the monitoring rate.

The roots of the equation for the steady state are

—(r+ g+ a — BI(L)) £ /(r + i, + a — BIL)) + 4((par, + QIL(L) + 55)3
28 ‘

Let’s denote by ITX and Hi the smaller and larger solution to the quadratic equation (E.A), respec-

tively. We show next that only one of these roots is consistent with m, > 0.

Claim E.2 (Bad News). If ur, > pg then
o+ 5HJLF < 0.

Given that we are in the bad news case, m, > 0 only if I, < —«/3. When puy, > pp, the larger
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L .
root IT% is

_rtprta—BIL) +/(r+pn+ o — BIIL))? — 4((pr + )II(L) + 45) (=)

HL
+ Y
L 20ty o FIND)) + 21/ (i, + )II(L) + 255)(—B)
—23
o rp ) VG WD+ 7))
B —pB —pB
> —%.

Hence, in the bad news case only the trajectory towards the saddle point is consistent with m, > 0.

Claim E.3 (Good News). If ur, < pg then
o+ BIIE <o.

In the good news case, m, > 0 only if I, > —«/3. The smaller root is

—(r+pr+ o — BI(L)) — /(r + pr + a — BII(L))* + 4((ur + A)T(L) + 745) 8

mt =
L 23

If ITY < 0 then there is nothing to prove as the payoff of the firm cannot be negative. Accordingly,
let’s restrict attention to parameters such that IIZ > 0. We have that II” > 0 if and only if

(r+pz = BI(L)) + v/ (r + pr + = BIL(L))? + 4((nz + )IL(L) + 255)8 < —a

Monitoring is positive at iff IT* > —a/3 which requires

(r+ pp — o+ BIIL)) + /(r 4+ pr + o — BII(L))2 + 4((pr, + a)II(L) 4 245)3 < 0

We consider two separate cases:

Case o <0 Using the condition for II% > 0 we get the inequality

7+ pp — o+ BI(L) 4+ /(7 + pr + o — BII(L))2 + 4((ur, + )II(L) + 245)3 >
2(r + pr, 4 BI(L)) — a + 2+/(r + pur + o — BII(L))2 + 4((ur, + a)I(L) + 245)B > 0

which contradicts the condition for positive monitoring I1* > —a/A.

Case a > 0 If (r + pur + a — BII(L)) > 0 then we get an immediate contradiction with the
hypothesis that IIX > 0. Hence, assume that (r + uz, + o — BII(L)) < 0. For any b > 0 and a < 0

36



we have the following inequality

Va?+b>lal= —a—+vVa>+b< —a—|a|=0.

If &« > 0 then we have 4((ur + @)II(L) 4+ z45)5 > 0. Setting a = (r + pr + o — BII(L)) < 0 and
b=4((pr + a)II(L) + zss)B > 0 in the previous inequality we get

qt — —(r+pta—pIL)) - Vr+pp+o—BI(L))2 +4((pr + o)II(L) + 24) 8 ~0
— 2/8 Y

which yields a contradiction to I > 0. O

37



F Discrete Time Model

In this appendix we consider a discrete version of the model. We show that the solution in the
discrete time version has a similar form to the one in the continuous time model and converges
to the continuous time policy when the time between periods goes to zero. Remember that the

original continuous time problem is

supp [3° (fy e " u(@d)ds + e TM(U,20)) dF (7)
subject to

[ (emr+NE=T) — g) dF(s) > 0.

Suppose that the the principal can only monitor at (real) time 7 € {0,A,2A,...}. Let § = e A
and B = e . That is, § is the one period discount factor and f is the one period transition

probability. With some abuse of notation, let’s define the utility function in period ¢ to be

u(xy) = /OA e "u <:Et€_)‘8 +a (1 - e_)‘s)> ds,

where @ is the flow payoff in the original continuous time version of the model. Notice that we have
that

Ti41 = (1 — ,B)EL + ,th.

Let’s denote the realized payoff of monitoring in period ¢ by
¢
Vi = Z 5nu($n) + 5tM(U7 ﬂi't),
n=0
and notice that V; = V(tA) where
V(r) = / e " u(z?)ds + e TTM(U, 2%)
0
We can now write the discrete time version of the problem as

[e.e]
maxp, > g Vipr

subject to

> k>0 ((ﬁé)k —q) prk =0, VE>0
tho pr=1
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Let (86)t1); be the Langrange multiplier of the constraint at time ¢. The Langrangian is
o o
L= Z Vipe + Z (o0 Z ((55)t+k - (55)@) Ptk
t=0 t=0 k>0
We can get replace pg =1 — 221 p¢ and write the primal optimization problem as

7

maxp, > 21 (Vi — Vo)pe

subject to

(1—q) + 335 ((B9) = 1) p 20

S ((B8) T, — (80)iq) prk > 0, VE > 1
21?21 pr <1

(F.1)

The Lagrangean for this problem is

T ¢

Llpn,v) =0 —qo+n+Y <v; ~Vo—n+ (B — 1) o+ Y x ((56)t - (66)’@)) P

t=1 k=1

From here, we get that for all ¢ > 1 it must be the case that
¢
Vi—Vo—n+ ((80) = 1) wo+ Y e ((80)' — (86)*q) <0,
k=1

which means that the dual of the optimization problem in (F.1) is

min (1 —q)Yo + 17

subject to

Vi — Vo —n+ ((B0) — 1) o + >y ¥ ((B5)! — (Bo)Fq) <0, VE> 1
n>0, 1 >0Vt>0

\

We start with the following Lemma characterizing policies that keep the incentive compatibility

constraint binding.

Lemma F.1. Let {p{ }i>0 be given by

0 ift<t*—1

Pl =< pp ift =t*

1—q t—t*—1 - ) .
<1_—B_6g) pt*—l—l th 2 t + 1,
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e g1 (B8)"H)

e = (Boyr — q(Bo)r T
. q1—B8) (B0 —q

Prt = 1" 36q (BO)T — q(Bo)F T

then the incentive compatibility constraint is binding att = 0 and t > t*+1 and slack for 0 <t < t*.
Alternatively, let {pY}i>0 be given by

0_gﬂ—5®< L—g)t
Pe= "85 \1-poq)

then the incentive compatibility constraint is binding at all t > 0.

Proof. If the incentive compatibility constraint is binding for ¢ > t* 4+ 1 then it must be the case
that > ;g ((BO)+* — (B6)!q) peyr = O for all t > t*+1. Suppose that p; = o'~ " =1p41. Replacing

in the incentive compatibility constraint at time t* 4+ 1 we get

Z ((Bé)k - g) af =0

k>0

which means that
1 _ 4

1—B0a 1—a’

and solving for a we get
l1—q

T 1-pBoq

Next, we determine pg and pg=11. The incentive compatibility at time zero requires that

(I=g)+> (B =) pe=(1—a)+ > (8 —1)p
t=1 =t
=> (B0)'pi—4q
t=t*
= (B pe-+ D, (BO)'pi—g
t= t*+1
= t —q+ Z — (B t*) Pt
t=t*+1
=0
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where we have used the fact that pp =1 — ;7 . 41 Pt- We have that

> ne pth( 56q>k

t=t*+1
- 1 — Boq
= M*ﬂ_qi(1 — 55)

o . - k
S (89 p = pea(B0) Y (M)

t=t*+1 t=t*+1 1 - Bég
.1 1= pdq
_ t*+1 1
- pt +1(ﬁ5) 1 _ ﬁ(s

Moreover, we have that

Replacing in the IC constraint we get

q(1-88)  (BO)" —¢

Prl = 1" 85q (o) — q(Bo)F T

We have the following Proposition characterizing the optimal policy

Theorem F.2. Let t = max{t > 0: (80)" > ¢}. If V; has a mazimum at t <t then the optimal
policy is deterministic monitoring at the mazimum. Otherwise, the optimal policy is the following:
1. The optimal policy is p? if
0

(1-B6) ~~( »
- %_55(1—@2( thVt_Vl>’

in which case the incentive compatibility constraint is binding at all times.

2. The optimal policy is p; if
I- 55 pl—l—n
= B Bag (Z I

55 pl—i—n
Vo — Vl_l—ﬁéqz<1— Vign = V1
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3. The optimal policy is pt , 1 < t* <1t if

1- (Bé)t* > p?—l—n
Ve Vo= G- B5q) (Z g i~ Ve

180 <~ Phoiin
Ve = Ve 2 555 > <—t*vt*_1+n — Vi

n=1

v

n=1

1= B8 <~ Plan
Vt*+1—Vt*§1_ﬂ5QZ< o Ven = Ve |

n=1

4. The optimal policy is

(0 ift <t
g_(66)5+1 ) o
_ JGoyape U=t
O ) P
Goyaosy Ut=tt
0 ift>t+1,

if forallt <t

1-86 <[ Pty
W+1—W>7ﬁz<1tjptv¥+n—‘/}>
=n=1 t

Proposition F.3. In the limit, when A — 0, the optimal policy converges to the one in the

continuous time model.

Proof. First, take the limit of the policy in Lemma [E.Il First, we consider the case with t* > 1.
Let 7 = tA and replace the expressions for § and S. First, we get that

a (1 - )
Pra/n = 2o — qe— T A

g(l - e—(r-i-)\)A) e—(?‘—l—)\)T* —q

Tx/A .
TH/AFL T ] o= (rHNAG o= (rHNTT _ ge=(r+A) (T +A)’

so taking the limit when A — 0 we get

/A Q(e(r—i_}\)T* - 1)

L

lim Tx/A

Jmpras =0

Second, we get that for 7 > 7*

Tr/A 1- e—(r-i-)\)Ag s 1—- e_(TH)AQ /A
Prn = T 1-4 1—_qPT*/A+1

42



Notice that

1 — e~ (A —r=/A e—(r—l—)\)Agpt* -

—(r—=7%)/A _ *
_ —(rNA 1 — e~ (r+NAY 1 _ o(r+X)7
<1 . g 1-¢ A) g(l—e )1—e a5

—¢ A T (1-@A  1-ge(rNA

so taking the limit we get that for any ¢t > ¢t* + 1 with 7 = tA

1— e(r—l—)\)'r*q 00 1— e(r—l—)\)'r*q
. Tx/A 1 —m*(s—T1%), * _ L —m*(r—1%)
ill_l)lo E p"/A_il—q /T e de—il_q e

n>71/A = =

which verifies that the policy converges to the on in the continuous time model. Similarly, when

t* = 0 the policy is given by

0 _
Prja = e~

(1 — e~ N8 (] =008 —7/A
=g

so for 7 = tA we get

o0

. 0 _ —m*(s—71*), * _ _—m*(r—1%)

ilino E>tpn—/T e midr =e
n>

1
T+

so we have monitoring with probability 1 at time 7. Finally, we can verify that the condition

1

Finally, notice that for the final case in Theorem [F.2l we have that p;+ps 1 =1, 7 = At — 7

log

0o Tx/A
1—-736 pT*/A—l—l—n
VT*/A o VT*/A—l = Z VT*/A—l-‘rn - VT*/A
_ Tx/A
! /862 n=1 \ 1 - pT*/A—l
1— 36 0o pT*/A
- Tx/A+n
VT*/A-i—l - VT*/A < Z . AVT*/A-l—n - VT*/A ;
1 — Bdq e \ 1 — pT*fA
converges to
A
V() = th (E[V(r)r > ]~ V(r¥).

Proof Theorem [F.2]

The case in which V; reaches a maximum for some ¢t < ¢ is trivial as in this case all the constraints
are slack, so we only need to consider the case in which V; is increasing for ¢ < t. In this case,
the proof relies on the theory of weak duality for infinite-dimensional linear programming problems
(Anderson and Nash, [1987, Theorem 2.1). The policy in Theorem is feasible for the primal

problem. We conjecture that the optimal policy takes this form, and construct Lagrange multipliers
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that are dual feasible. By weak duality, the value of the dual given these Lagrange multipliers
provides an upper bound on the value of the primal. We then verify that the value of the dual
corresponds to the value of the primal given our conjectured policy, which establishes the optimality
of our conjectured policy.

We start with some Lemmas that will be useful in the computations.
Lemma F.4. If u is convex then u(xiy1) — Pu(xy) is increasing.

Proof. Since 8 > 0, the inequality we are claiming is equivalent to

1
1+3

u () < u(Tee1) + u(wp—1) - (F.3)

1+ 4

Now, using twice the definition of z;, we have:

1 + B " _ﬁxt+(1—5)5+5$t—1_aj
TR e R s 5 =

In other words, x; is a weighted average of z;4+1 and z;—1. Note that the weights are the same as
in (£3)) and hence convexity of u implies that (£.3]) indeed holds. O

Lemma F.5.

MU, z¢) = BM(U, z¢—1) = (1 = B)M(U, a)

F.1 Construction of the Lagrange Multipliers

Let t* be the the first date at which there is monitoring with positive probability. The objective is
to construct multipliers when the incentive compatibility constraint is binding after t* + 1. Let’s
define

¢
Fe=Vi—Vo—n+ ((80) = 1)wo+ Y e ((80) = (89)*q)
k=1
which correspond to the LHS of the constraint at time ¢ in the dual problem. Clearly, the multipliers
(n,%) are dual feasible if and only if F; > 0. Taking the difference Fi; — F; we get

t

Fro — F, = Vigr = Vi + (1= @)(B0) 1 — ((BS)" — (B8)'™) Zﬂ’k
k=0

where

Vier — Vi = (5t+1u(azt+1) + 5t+1M(U,xt+1) — ' M(U, zy)

If F; =0 and 9411 > 0, then it must be the case that Fyy; = 0, so Fyy1 — F; = 0. This requires
that

(1= )(B0) i1 = —(Visa — Vi) + ((B5)" = (B6)"1) D by > 0 (F.4)

k=0
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We want to derive a difference equation for 1/;t = B4y such that F; = 0 for all t > t* + 1. From
equation (E.4) we have that if Fyy; = 0, then v, is given by

t
(L= )(B0) a1 = —(Virr — Vi) + ((88) = (8)*1) D v (F.5)
k=0
Considering equation at time ¢ and multiplying both sides by 80 we get
t—1
(1= )(B8) b = =B(Vi = Vier) + ((86)" — (B6)1) D o (F.6)

k=0

Taking the difference between (E.I]) and (E4)), and using the definition oy = Bl we get
(1= @0 ra = BO(Vi = Vir) = (Viar — Vi) + (1 — B9) 8"

Hence, for any t > t* + 1, ¢, satisfies the recursion

Pre1 = oy — hy (F.7)
where
_ 1—gpd
“= (1—q)o
= 1 (o) = Bule) + (1= HM(U,0),

and a > 1, hy is increasing by Lemma [F.4l Solving recursively, we get that

k—1
Vo1 = OF ey — Z PV gy, k> 1 (F.8)

n=0

The final step is to specify conditions on the initial value ¢y=11 that guarantee that the sequence

{1 }1>1+41 in equation (E.8) is nonnegative.
Lemma F.6. Fiz 0 < t* <t then

1. If u(zpep1) — Bu(ze) + (1 — B)M(U,a) > 0 then by > 0 for all t > t* + 1 if and only if

Ypeg1 > m% i <(1 — g);)"“ (w(@prnt2) — Bu(Te4140) + (1 = B)M(U, a))
(1 —q) S \1—gp

2. If u(zpy1) — Pulae) + (1 — B)M(U,a) < 0 then ¢y > 0 for all t > t* + 1 if and only if
Y41 > 0.
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Proof. Consider an initial condition of the form

[e.e]

. 1
Ypeg1 = Z pes] hi 4140 + A (F.9)

n=0

for some A to be determined. Replacing the initial condition in (E.9) in (E.8]) above, we get

[ k—1
- 1 _1—
Vo1 = aF Z Wht*-l-l-l-n + kA - Z o
n=0 n=0
o
= Z Oék_l_nht*+1+n +aFA
n=k
1
k
=« <Z Wht*—kl—kn + A)
n=~k
Hence, zﬁt*+1+n is nonnegative if
=1
A=) —ghe im0, (F.10)
n==k
Let’s define
=1
Hy, = Z Wht*+1+m
n==k

where h; is increasing.

First, let’s consider the case with u(zy41) — fu(xe=) + (1 — f)M(U,a) > 0. Because hyx 4144 18
increasing, we have in this case that hy414, is positive for all n, so we need to take A = 0, which
corresponds to the condition in the Lemma.

Next, we consider the case with u(zpy1) — Bu(xe) + (1 — B)M(U,a) < 0. Let’s define t' =
sup{t > t* + 1 : hy < 0}. By definition, H}, is decreasing for k < t' —¢* — 1 and increasing for
k> t' —t* —1. This means that Hj, has a minimum at k' = ¢/ —¢* — 1, and so —H}, has a maximum

at k'. Thus, @turprk is nonnegative if and if

[e.e]

1
A>— Z Wht*—l—l—l—n-
n=kt
Replacing in (E9) we get that
- =1 =1
Ypry1 > Z Wht*+l+n - Z Wht*+l+n
n=0 n=kf

kt—1
1
=D e
n=0
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By definition of k‘T, hixy14q for all n < kT — 1 which means that ZIZT:_OI #ht*_,_l_,_n < 0, so it is

enough to consider T;t*—',-l >0

F.2 Verification of Optimal Policy

F.2.1 Case: 0 <t* <t

O

First, we consider a policy in which 0 < ¢* < . The following propositions characterizes sufficient

conditions for this policy to be optimal.

Proposition F.7. Let t = max{t > 0: (86)" > q}. Let 0 < t* <1 be such that: if t* =1 then

1- (Bé)t* S p%*-l—n
Vie = Vp > Vi g — Vi
t 0= (Bé)t*(l—ﬁég) Zl—ptl* t+ t

n=1

1—-750 Diein
‘/ * — ‘/ x < ‘/ Xy — [/ * s
t* 41 [— 1_/862 7;:1 <1_pg* t*+ t

and if t* > 1 then

(B6)" (1 — Bdq) 1 —pi-
0= u(ze) — Bu(ze—1) + (1 = B)M(U, a)

1—66 = { plii,
Viegr — Ve < & Z( t+t*V2*+n—V2*)-

1— (B8 = phiy,
Vi Vo > o (0 (thiwhm—w

n=1

n=1
If this conditions are satisfied, then the optimal policy is {pt H>o-
Proof. The first condition at time t* yields
Ve = Vo+ ((89)" = 1) wo = n.
Replacing 7 in the first order condition at time t* + 1 yields
Viest = Vie = ((80)!" = (80)" ") o + (88)' (1 = g1 = 0.
Solving for 1y and 1 we get

Vieg1 — Vi Bé(1 —q)

Yo = TBoyr — (g T 1o V!
Vi = Vg1 + (B)Y (Viey1 — BOVie) B8(1 — (86))
" (Bo)" — (Bo)+1 Vo 1_—55(1 — Q11
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From here we get that

N — q) Vieyqr — (BT — q) Vi 5((B8)F —
TR W (G ﬂ()&;);l_ ééfh QVie %&5@ (1— g1 (F.13)
(85)"+1

Notice that ¢* < min{t > 0: ()" > ¢}, which means that 1+ Wg—g > 0 so the solution always
involves choosing the smallest possible ¢y~y1. Suppose that t* > 1 satisfies the conditions in the

proposition and consider the multiplier

(1 — (89)")

_ Vie — Vi1 + (55)t* (Vi1 — BV )

(BO) — (Bo)+1 S T
C VenVe B-g)
Yo = (B3VF — (Bo)F 1 + T~ 5 Yrr41
P =0, 0<t < t*
1 0 (1 — q)(5 ntl — *

By Lemma [F.6], the multipliers {¢;};>0 are nonnegative. By weak duality, to verify the optimality
of {pj }+>0, it is enough to verify that the proposed multipliers are dual feasible and that (1—g¢)vo+n
equals the expected payoff of {p} };>0.

Step 1: First, we verify that (1—¢q)vo+n = Y0Pt Vi — Vo. Replacing the expressions for n and
Py we get

((B8)" — ) Vera = ((8)" ' — g Vir
(ﬁé)t* _ (Bé)t*-i-l

5 t* 00 1— n+1 .
+ (51 )_ ﬁég (ﬁ;)t* Z <1 — q%é) St +n+2 (u(xpr ynyo) — Bu(xp4ny1) + (1 — B)M(U, a))

-V

(1—=q)bo +n=

n=0

(F.14)
which can be written as

(B — @) Ve = (89" —g) Vir
A (36— (5o 1 o

(59" —a__ < Ld )nH
PR A— y (Viesmpa — (1 + B8V pnst + BViesn) (F.15)
(55),5 — (55)t T1 TLZ::O t*+n+2 t*4+n+1 t*+
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Using telescopic sums, we have that

o

1— q n+1
Z (1 — —55> (Ve tnra — (14 B0) Vs i1 + BV ) =

:0 [<1l__q§5>n+l Viesnis — (11_;5)”%%“] - i:: [(11_;[%(5)%1 - <11__j35>n
_Mnio [<1 - Qﬁ5>n+1 Vertni1 = <11—_q§5>nv“+" 52 [(1 - qﬁ5>n+1 - <11—_g%5>n
q(1— 55 Z <1l__g§5>n Verfnil — 55—11__(122 ;} (11__2%(5)” Vietn =
e ) (e

Bo(1 —q) 1—ﬁ52°°<1—g

Vie — Vi V*n
1-qgB5 Lt 0)? = 1—g55> ot

‘/t* +n+1

‘/t*—l—n =

BV — Vir 1 +

Replacing in equation (E.15]) we get

((B0)" — g) Viess = ((BO)"*' —g) Vir
(/Bé)t* _ (Ba)t*-i-l
2 o0

(1 =)o +n= — Vo

(B — q Bo(1 - q) q(1 — B3) 1—g \" -
+ (B&)E — (BO)F+1 < 1= ¢Bo Ve = V1 + (1 —gﬁ5)2 Z (1 Q55> Vt*+n+1) =

=0
q(1—pB6) 1 (B + (B —q  q1—B82 [ 1—gq \"
g oy T G (e (- gey 2 (1= gﬁ5> Vieenss

So, after some manipulations and replacing pi* we get that
_ g1 —p8) 1 (ps)"H (B)" —q g1 =P8 ([ 1—g \"

(=900 =555 Gy — oyt~ oy — (L g 2 (1=g35) Ve
(1= (Bo)" ) (B —q  q(1—p9) —q \"
oy g T T e @) 1 g (1 ~ g 5) Ve

(e e]
. N 1 q n
4 Vi Vv E : t =
- * * + * S E——— ‘/ *
pt ' ’ n:()pt 1 <1 Qﬁ&) t +n+1

(o.] o
= Vi — Vo= > piVi— Vo
n=0 t=0
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Step 2: The only step left is to verify that n > 0 and ¢4++1 > 0. We can write

o = Viey1 — Vi
07 (o) — <55>t*+l

T B 1 46

1 185

which means that

(1 —=q)vo

T (BST — (Bo) (1 - gﬁf5> Vet By = (Boyr I (1— qBoy? 2

_ oyt
55 RS Z < 0-9 > 8" (u(@ppny2) — Bulrng) + (1 — BIM(U, a))

1 q(1—B6)* & < l1—gq
1_

W) Vi tna1,

N CHEECOHLEEANE

Using the definition for p!” we get

1—¢ 1— 86 lmg  q- P 1o \"
(1=a) e * Gt g & (g5 Voo

l1—g¢ 1— 6 ) 1 l—q
(BO)F — (BO) 1 \1—¢B6 ) ple q(1 — (85" +1)
l-g  at-p3* 1 _ 1-g
(BO)" — (BO)" T (L —gBo)2 pfyy  (BO)T — ¢
SO
1—gq . l—g¢g
(1—q)ho = __q—(l — (ﬁé_)t*ﬂ)pi* Vi + BOF —q Zpt 14 Vet

Hence, replacing in (1 — ¢)io +n = >

1— ) t*+1
4(B9) Vo —

oo PiVi — Vo (Step 1) we find that

1- ()" (B8)" —q(BO)"+

n= _q—(1 (ﬁé)t*+1)pt Vi —
1—(B6)"

(

* * D= nv n+1
BT —q(Bo)t (BO)" —q HZ:O e T

= Ve = Vo G — gy

>0

In the case of =11, notice that

1 (1—4q)d
VS I g & Z (1—g55

P4
(thj m+n—w>

n+1
) (W sns2) — Bulersipn) + (1 - HM(U, @)
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if and only if

0 _ n+1
0< nzz:o ((11_ gﬂﬁ)) St +n+2 (w(xp 4nt2) — Bu(zp4140) + (1 — B)M(U, a))

831 —g) 1—56 g
= Togps VT Vent Z (1 055

1—-756 p*n
O<W*-W*+1+ ﬁ Z( rt Vt-i-n_vt*>

n
) V;f*—l—n—l-l

Step 3: Feasibility for ¢t < ¢t*. If t* > 1, then we We need to verify that
Vi—Vo—n+((80) = 1) o <0, ¥t <t".
If we replace 1 and ¥y we get

(B9)" — (BO)" (1 —q) (B! — (B3)" 1)

Evaluating (E16) at time t* — 1 and simplifying we get
(1 —q) ((89)" — (B8)"*!
BOI(Vir—1 — Vie) + Ve — Vi + ( )T,Z)t*+1 <0.

1-750

If we replace

B6(Vie—1 = Vie) + Vit — Vi = 8" 9 (u(ap 1) — Bulaee 1) + (1 — BYM(U, @)

and 91 we get

00 A5\
nzz:o <(11_ g%é) (U(!Et*—l—n—l—l) - Bu(l‘t*+n) + (1 _ B)M(U,d)) <0

Feasibility for ¢t < t* follows from the following lemma

Lemma F.8. If u(xy) — pu(ze—1) + (1 — B)M(U,a) < 0 then
Vi = Vo—n+ ((B9) = 1) 9o <0, Vt <t
Proof. We prove the statement by induction. Let

F, =V, —Vo—n+ ((B8)" — 1) ¢y

ol

(F.16)



an consider periods t + 1, t and t — 1, for 1 < ¢ < t* — 1. Then, we get

BO(Fy — Fy_1) = Bo(Vy — Vier) + ((B8)F! — (89)") 4o
(Fip1 — F) = B6(Vigr — Vi) + ((88) 1 — (B8)!) 2o,

so taking difference we get

BO(Fy — Fi—1) — (Fig1 — Fi) = (Ve — Viet) — (Vg — Vo)
= — (u(zp41) — Pu(z) + (1 = B)M(U, a))
Given that u(zi41) — Bu(x) + (1 — f)M(U,a) < 0, we get that

BO(Fy — Fi—1) > (Fyy1 — F) >0

which means that
F, 1 < F,.

The results follows from the fact that Fi~ = 0 and that w(xiy1) — Su(ay) + (1 — B)M(U,a) is

increasing. ]
O

Notice that

1 X ((1—g)a\"" i
Ypy1 = m Z (1 — q_ﬁ(5> (u(@ts 4nt2) — Bu(@ee1140) + (1 — BIM(U,a)) > 0
27 n=0 1

Suppose that

o —a)s n+1
0= ;::O <(11_ 55)5> (W@t 4nt1) = Bu(@es15) + (1 = B)M(U, a))

which is equivalent to

o0 _ 5 n
0= ;0 <(11_ ggﬁ)(g) (u(@t=4nt1) = Bu@ee4n) + (1 = BIM(U,a)) -
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If this conditions are satisfied we get that

e _ )5\
nzz:o <(11_ 55{5) (u(xprynt1) — Bu(xps4n) + (1 = B)M(U, a))

X ((1—q)d
2> <1 . qq&;> (W@ pnp1) = Bulzrn) + (1 = HM(U,a)),

n=0

which is equivalent to

0> u(xpi1) — Pu(ze) + (1 — B)M(U, a).
By Lemma the right hand side is monotonic, and this means that
0> u(zy) — Py —1) + (1 = B)M(U, a).
Moreover, following similar computations as the ones we did to compute (1 — g)¢o + 7 we get that

_ 5n+1
0>§:<f—;%> (w(@pe ns1) — Bul@pe4n) + (1 = B)IM(U, a))

is equivalent to

* — w«_1 > * — *
Ve — Vi 1_1_%;:1:(1_]9 Ve—t4n — Vi

F.2.2 Case: pp >0
Next, we consider the case where pg > 0. In this case, >, pr < 1son=0.
Proposition F.9. Suppose that

s g ()

1) =1

then the optimal policy is {p9}i>0

Proof. Because py > 0, the constraint Zt21 pr < 11is slack and 7 = 0. Consider the multiplier at
t=1

00 —a)s n+1
Y1 = Y Z <(1 g) ) 5" (w(zng2) — Bulzni1) + (1 — BIM(U,a))

Bo(1—q) 24 \T— 453
o 1 g1—=B0? 1 N l-a\"
I A T AR ke e P (1—g55> s
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and from the first order condition we have that

Vi — 86 (1—q)

tho = 1= 3o +1/11 -

From here, we get that

(1-9(1 —W)
1-365

ﬁé(l—g)2 1 1 g(l—ﬁé)z 1 s 1—q \"
Y (1—g55VO_55(1—g)vl+(1—g55)255(1—g)nz<1—g55> Vot

=0
(1-9q) g1 —B0) & 1—g \"™
Tt g o () Ve

=> pVi—

t=0

(1—q)bo+n=

which verifies that the value of the dual problem equals the value of the primal. We only need to

verify that 11 > 0 so the constructed multipliers are dual feasible.

1 1 (1—B0) &
Y1 = 1_2&5‘/0 55(1_@‘/1—#55(1_2)2 ;ptvt

1 (1-86) <~ ( !
=T 5o VO_Vl*ﬁé(l—g);( p8Vt_V1>

which means that ¢y > 0 if and only if

[e.e]

1 — p9)
>
5(1—q) Z< > Vi—W
=1
O
F.2.3 Case: ps+ps 1 =1
Finally, we need to consider the case in which for all 0 < t* <¢
(1—go\"" )
0= Z 1= ¢80 (w(@peyny2) — Bu(Tes 4nt1) + (1 = B)M(U, a)) (F.17)

which means that the conditions in Propositions [F.7] and [F.9 are not satisfied. In this case, we

consider a policy such that the incentive compatibility constraint constraint is binding at time zero,

o4



p; + piy1 = 1 and the incentive compatibility constraint is slack at ¢,¢ + 1, which yields

ViV
N (m)
1= Vim Vo~ e (Vi — W) (F.19)

This means that the probability of monitoring at time £ is

q- (55){-"—1
P (8 (1= o)

Because the inequality (E.17)) is satisfied, we can take ¢y = 0 for all 0 < ¢ < t and satisfy all the
complementary constraints at 0 < ¢t < £. We can pin down the multipliers 1)y and 1 using the first
order conditions at time ¢ and ¢ + 1. Replacing in the first order conditions at time  + 2, we get

that the complementary slackness condition is satisfied for ¢z, 5 = 0 if and only if
(L4 B0) Vi1 — Viga — BOVE = — (u(y2) — Bu(zyr) + (1 = BIM(U, a)) > 0,

which is necessarily the case if

Finally, we verify that

B Vi — Vi ] 1- (B .
(1—gq)vo+n= <1—g>(55);_1 oy Vi Vo~ e gyt (Vin — V)
(BO) — ¢

(Bo) - (55}%1 Vi = Vo + V=1

= piVi + pi1 Vi — Vo
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